找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: A Modern View of the Riemann Integral; Alberto Torchinsky Book 2022 The Editor(s) (if applicable) and The Author(s), under exclusive licen

[復(fù)制鏈接]
樓主: MEDAL
11#
發(fā)表于 2025-3-23 13:19:34 | 只看該作者
12#
發(fā)表于 2025-3-23 13:51:20 | 只看該作者
https://doi.org/10.1007/978-3-540-77869-1 of 1853. He had spent 30 months working on the dissertation, and in the fourth section, entitled “Ueber den Begriff eines bestimmten Integrals und den Umfang seiner Gültigkeit” (“On a notion of a definite integral and the scope of its validity”), Riemann introduced the following condition for a fun
13#
發(fā)表于 2025-3-23 19:30:35 | 只看該作者
14#
發(fā)表于 2025-3-23 23:38:43 | 只看該作者
15#
發(fā)表于 2025-3-24 04:17:39 | 只看該作者
A Modern View of the Riemann Integral978-3-031-11799-2Series ISSN 0075-8434 Series E-ISSN 1617-9692
16#
發(fā)表于 2025-3-24 10:23:27 | 只看該作者
https://doi.org/10.1007/978-3-540-77869-1 of 1853. He had spent 30 months working on the dissertation, and in the fourth section, entitled “Ueber den Begriff eines bestimmten Integrals und den Umfang seiner Gültigkeit” (“On a notion of a definite integral and the scope of its validity”), Riemann introduced the following condition for a function to have an integral on an interval.
17#
發(fā)表于 2025-3-24 13:12:25 | 只看該作者
Alberto TorchinskyShowcases the full capabilities of the Riemann integral from Riemann’s original viewpoint.Establishes new results and methods for approaching computations and applications.Offers numerous historical i
18#
發(fā)表于 2025-3-24 16:07:19 | 只看該作者
19#
發(fā)表于 2025-3-24 20:10:52 | 只看該作者
https://doi.org/10.1007/978-981-19-6215-8In Chap. 3 we prove a basic convergence theorem for the Riemann integral, which, in particular, gives the Riemann–Lebesgue lemma of Fourier series in its various formulations. We also cover the Weierstrass algebraic and polynomial approximation theorems.
20#
發(fā)表于 2025-3-25 00:27:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 07:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
福泉市| 泰和县| 吐鲁番市| 普陀区| 饶阳县| 赤城县| 宾川县| 江西省| 会泽县| 满洲里市| 遵化市| 丹棱县| 松桃| 龙游县| 盈江县| 曲麻莱县| 方正县| 随州市| 本溪| 娄烦县| 蓬莱市| 广德县| 奉新县| 翁源县| 揭阳市| 德令哈市| 宁夏| 个旧市| 张北县| 哈密市| 新源县| 盘锦市| 原平市| 安泽县| 合阳县| 江口县| 衡南县| 都昌县| 土默特左旗| 房产| 固原市|