找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: A Mathematical Journey to Relativity; Deriving Special and Wladimir-Georges Boskoff,Salvatore Capozziello Textbook 20201st edition The Edit

[復制鏈接]
樓主: CK828
11#
發(fā)表于 2025-3-23 11:13:05 | 只看該作者
12#
發(fā)表于 2025-3-23 14:44:53 | 只看該作者
Textbook 20201st edition?tre-Robertson-Walker, and G?del ones. Some current problems like dark energy are also scketched. The book is? ?self-contained and includes details of all proofs. It provides solutions? or tips to? solve problems and exercises. It is designed for undergraduate students and for all readers who want a
13#
發(fā)表于 2025-3-23 21:22:52 | 只看該作者
Introduction: Hard Talk and Mean Streets,her perspective: the surfaces can be seen as pieces of a plane endowed with a metric, and this metric only determines the curvature. In Minkowski 3-spaces we have the same picture, the Minkowski product determines a non-Euclidean metric of a surface which allows us to conclude about the intrinsic Ge
14#
發(fā)表于 2025-3-24 01:14:26 | 只看該作者
https://doi.org/10.1007/978-3-319-30108-2In .th century, Newton considered light as a collection of particles, now called photons according to Quantum Mechanics, traveling through space. Reflection and refraction of light were explained in a satisfactory way interpreting light rays as trajectory of photons.
15#
發(fā)表于 2025-3-24 04:30:36 | 只看該作者
16#
發(fā)表于 2025-3-24 10:12:02 | 只看該作者
17#
發(fā)表于 2025-3-24 12:51:19 | 只看該作者
https://doi.org/10.1007/978-3-030-47894-0Euclidean Geometry; Relativity Graduate Textbook; Non-Euclidean Geometry; Minkowski Plane Geometry; Mink
18#
發(fā)表于 2025-3-24 15:05:47 | 只看該作者
978-3-030-47896-4The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
19#
發(fā)表于 2025-3-24 21:06:45 | 只看該作者
20#
發(fā)表于 2025-3-25 00:28:22 | 只看該作者
Christianities in the Trans-Atlantic World Geometry are described. But how these geometries look like? In this chapter we present an algebraic model for Euclidean Geometry discussing some important theorems. We obtain a visual representation for the Euclidean Geometry of the plane.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 21:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
什邡市| 张北县| 和平县| 资中县| 武清区| 德令哈市| 安徽省| 资溪县| 浮梁县| 扎兰屯市| 托克逊县| 武胜县| 团风县| 左贡县| 兴安县| 桐乡市| 沿河| 黄石市| 朝阳县| 五家渠市| 鲁山县| 大厂| 延寿县| 岳池县| 高陵县| 金门县| 浦县| 灵山县| 丰都县| 侯马市| 桃江县| 承德市| 洛阳市| 夹江县| 青神县| 南丹县| 伽师县| 玛多县| 家居| 新巴尔虎左旗| 宿州市|