找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: A Kaleidoscopic View of Graph Colorings; Ping Zhang Book 2016 The Author 2016 chromatic graph theory.chromatic index.chromatic number.edge

[復制鏈接]
樓主: 助手
31#
發(fā)表于 2025-3-26 23:42:56 | 只看該作者
Frances Stewart,Sanjaya Lall,Samuel Wangwesh this. On the other hand, if the goal of a graph coloring is only to distinguish every two adjacent vertices in . by means of a vertex coloring, then, of course, this can be accomplished by means of a proper coloring of . and the minimum number of colors needed to do this is the . of .. Among the
32#
發(fā)表于 2025-3-27 01:40:11 | 只看該作者
https://doi.org/10.1007/978-1-349-12255-4he color of a vertex is the set of colors of the neighbors of the vertex. In this chapter, proper vertex colorings are also discussed that arise from nonproper vertex colorings but here they are defined in terms of multisets rather than sets.
33#
發(fā)表于 2025-3-27 07:48:06 | 只看該作者
34#
發(fā)表于 2025-3-27 13:22:17 | 只看該作者
35#
發(fā)表于 2025-3-27 13:45:22 | 只看該作者
36#
發(fā)表于 2025-3-27 17:57:57 | 只看該作者
https://doi.org/10.1007/978-3-642-34946-1 coloring of . whose colors are (. + 1)-tuples of nonnegative integers. In this chapter, we discuss the corresponding (. + 1)-tuples when the original coloring is a nonproper coloring. This gives rise to vertex-distinguishing colorings called recognizable colorings.
37#
發(fā)表于 2025-3-27 21:55:16 | 只看該作者
38#
發(fā)表于 2025-3-28 04:43:06 | 只看該作者
39#
發(fā)表于 2025-3-28 06:48:39 | 只看該作者
https://doi.org/10.1007/978-981-10-3467-1In this chapter we describe yet another proper vertex coloring induced by a given nonproper vertex coloring of a graph. This proper vertex coloring is defined with the aid of distances and this too may very well require fewer colors than the chromatic number of the graph.
40#
發(fā)表于 2025-3-28 13:18:54 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 14:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
临桂县| 威远县| 乌鲁木齐县| 余姚市| 岳阳市| 龙门县| 丰镇市| 宁强县| 宝山区| 安达市| 常宁市| 阿瓦提县| 施秉县| 杭锦旗| 保康县| 新安县| 南华县| 太谷县| 菏泽市| 晋宁县| 教育| 高清| 定州市| 海阳市| 东源县| 格尔木市| 大城县| 新巴尔虎左旗| 绍兴市| 如东县| 海伦市| 洛浦县| 渭南市| 塔城市| 射洪县| 鹤山市| 上饶市| 沙洋县| 衢州市| 若羌县| 泸定县|