找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: A Guide to Penrose Tilings; Francesco D‘Andrea Book 2023 The Editor(s) (if applicable) and The Author(s), under exclusive license to Sprin

[復(fù)制鏈接]
樓主: deflate
21#
發(fā)表于 2025-3-25 07:19:39 | 只看該作者
Continuous Transformation Groups,elf-contained introduction to Bratteli diagrams, AF equivalence relations, AF algebras and their K-theory, and their use in the classification of minimal Cantor systems, such as the one parameterizing Penrose tilings. We will take for granted some basic results about K-theory and assume that the reader has some familiarity with C*-algebras.
22#
發(fā)表于 2025-3-25 09:54:11 | 只看該作者
Book 2023in the ‘70s. Quasi-periodic tilings of the plane, of which Penrose tilings are the most famous example, started as recreational mathematics and soon attracted the interest of scientists for their possible application in the description of quasi-crystals. The purpose of this survey, illustrated with
23#
發(fā)表于 2025-3-25 11:45:48 | 只看該作者
Book 2023more than 200 figures, is to introduce the curious reader to this beautiful topic and be a reference for some proofs that are not easy to find in the literature. The volume covers many aspects of Penrose tilings, including the study, from the point of view of Connes‘ Noncommutative Geometry, of the space parameterizing these tilings..
24#
發(fā)表于 2025-3-25 19:40:09 | 只看該作者
ns an overview of the tools from noncommutative geometry nee.This book provides an elementary introduction, complete with detailed proofs, to the celebrated tilings of the plane discovered by Sir Roger Penrose in the ‘70s. Quasi-periodic tilings of the plane, of which Penrose tilings are the most fa
25#
發(fā)表于 2025-3-25 20:51:16 | 只看該作者
26#
發(fā)表于 2025-3-26 01:07:57 | 只看該作者
27#
發(fā)表于 2025-3-26 07:52:52 | 只看該作者
28#
發(fā)表于 2025-3-26 09:49:42 | 只看該作者
29#
發(fā)表于 2025-3-26 13:20:18 | 只看該作者
30#
發(fā)表于 2025-3-26 20:19:23 | 只看該作者
Robinson Triangles,s and was more concerned with the measurement of material properties, such as eddy-current loss and permeability, than with what was then the very new concept of domain wall motion. A valuable review of the beginnings of a more microscopic approach to these problems has been given by Kittel (1946a)
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 20:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大同县| 贵阳市| 松江区| 平陆县| 大连市| 金坛市| 宝坻区| 平昌县| 舒兰市| 哈巴河县| 浦城县| 焉耆| 南澳县| 汝阳县| 静海县| 漳平市| 巴中市| 乌兰县| 长兴县| 象州县| 京山县| 华亭县| 平湖市| 竹溪县| 吴堡县| 新民市| 四子王旗| 开封县| 罗江县| 理塘县| 靖宇县| 孙吴县| 明溪县| 襄城县| 射洪县| 象州县| 噶尔县| 桂东县| 大邑县| 左贡县| 藁城市|