找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: A Generalization of Bohr-Mollerup‘s Theorem for Higher Order Convex Functions; Jean-Luc Marichal,Na?m Zena?di Book‘‘‘‘‘‘‘‘ 2022 The Editor

[復(fù)制鏈接]
樓主: Considerate
11#
發(fā)表于 2025-3-23 12:18:46 | 只看該作者
https://doi.org/10.1007/978-3-030-95088-0Difference Equation; Higher Order Convexity; Bohr-Mollerup‘s Theorem; Principal Indefinite Sums; Gauss‘
12#
發(fā)表于 2025-3-23 15:37:29 | 只看該作者
13#
發(fā)表于 2025-3-23 18:54:25 | 只看該作者
14#
發(fā)表于 2025-3-23 23:35:17 | 只看該作者
15#
發(fā)表于 2025-3-24 04:40:24 | 只看該作者
https://doi.org/10.1007/978-3-663-09235-3In this chapter, we study some important properties of the sets . and . and provide interpretations of the asymptotic condition that defines the set ..
16#
發(fā)表于 2025-3-24 08:47:03 | 只看該作者
17#
發(fā)表于 2025-3-24 11:54:59 | 只看該作者
Ergebnisse der empirischen Untersuchung,In this chapter, we discuss the higher order differentiability properties of Σ. when . lies in . for any .. In particular, we show the fundamental fact that Σ. also lies in . and that the sequence . converges uniformly on any bounded subinterval of . to ..?Σ..
18#
發(fā)表于 2025-3-24 15:58:15 | 只看該作者
https://doi.org/10.1007/978-3-8349-6812-8As discussed in the first chapter, the main objective of our work is to generalize Krull-Webster’s theory to multiple .-type functions and explore the properties of these functions that are analogues of classical properties of the gamma function.
19#
發(fā)表于 2025-3-24 19:36:17 | 只看該作者
Theoriegeleitete Modellentwicklung,In the previous chapter, we tested our results on some multiple .-type functions that are well-known special functions. It is clear, however, that there are many other multiple .-type functions that are still to be introduced and investigated, simply as principal indefinite sums of standard functions.
20#
發(fā)表于 2025-3-25 01:51:37 | 只看該作者
A Generalization of Bohr-Mollerup‘s Theorem for Higher Order Convex Functions978-3-030-95088-0Series ISSN 1389-2177 Series E-ISSN 2197-795X
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 22:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南川市| 塘沽区| 潞西市| 松原市| 揭西县| 库尔勒市| 宁乡县| 南雄市| 山阳县| 庆元县| 张家港市| 太谷县| 奈曼旗| 鸡东县| 赤城县| 凭祥市| 平和县| 抚顺县| 松阳县| 昂仁县| 鹤壁市| 额尔古纳市| 高安市| 东乌珠穆沁旗| 莱芜市| 古交市| 平果县| 江都市| 乐陵市| 张家界市| 邳州市| 苍溪县| SHOW| 涪陵区| 嘉祥县| 镇巴县| 依安县| 光山县| 长治市| 鄄城县| 甘孜县|