找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: A Discrete Hilbert Transform with Circle Packings; Dominik Volland Book 2017 Springer Fachmedien Wiesbaden GmbH 2017 circle packings.Hilbe

[復(fù)制鏈接]
查看: 23439|回復(fù): 38
樓主
發(fā)表于 2025-3-21 19:40:44 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱A Discrete Hilbert Transform with Circle Packings
影響因子2023Dominik Volland
視頻videohttp://file.papertrans.cn/141/140695/140695.mp4
發(fā)行地址Proves a Conjecture on Circle Packing Manifolds.Includes supplementary material:
學(xué)科分類BestMasters
圖書封面Titlebook: A Discrete Hilbert Transform with Circle Packings;  Dominik Volland Book 2017 Springer Fachmedien Wiesbaden GmbH 2017 circle packings.Hilbe
影響因子.Dominik Volland studies the construction of a discrete counterpart to the Hilbert transform in the realm of a nonlinear discrete complex analysis given by circle packings. The Hilbert transform is closely related to Riemann-Hilbert problems which have been studied in the framework of circle packings by E. Wegert and co-workers since 2009. The author demonstrates that the discrete Hilbert transform is well-defined in this framework by proving a conjecture on discrete problems formulated by Wegert. Moreover, he illustrates its properties by carefully chosen numerical examples..
Pindex Book 2017
The information of publication is updating

書目名稱A Discrete Hilbert Transform with Circle Packings影響因子(影響力)




書目名稱A Discrete Hilbert Transform with Circle Packings影響因子(影響力)學(xué)科排名




書目名稱A Discrete Hilbert Transform with Circle Packings網(wǎng)絡(luò)公開度




書目名稱A Discrete Hilbert Transform with Circle Packings網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱A Discrete Hilbert Transform with Circle Packings被引頻次




書目名稱A Discrete Hilbert Transform with Circle Packings被引頻次學(xué)科排名




書目名稱A Discrete Hilbert Transform with Circle Packings年度引用




書目名稱A Discrete Hilbert Transform with Circle Packings年度引用學(xué)科排名




書目名稱A Discrete Hilbert Transform with Circle Packings讀者反饋




書目名稱A Discrete Hilbert Transform with Circle Packings讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:02:13 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:27:42 | 只看該作者
Auxiliary Material and Notation,ce — began with a short story called The Delta Cousins’ and then grew unexpectedly. She had produced . under pressure from editors who felt that the legitimate form of important fiction was the novel, but that book is more a playfully extended tale than a novel. ‘The Delta Cousins’ was a story conti
地板
發(fā)表于 2025-3-22 05:05:33 | 只看該作者
5#
發(fā)表于 2025-3-22 09:43:23 | 只看該作者
6#
發(fā)表于 2025-3-22 14:29:23 | 只看該作者
7#
發(fā)表于 2025-3-22 17:50:45 | 只看該作者
8#
發(fā)表于 2025-3-23 01:10:11 | 只看該作者
Front Matter be) NP-complete or NP-hard 3D ESP problems in time ., where . is the number of layers in a stack, which is introduced in this chapter as being the .. The proposed approximation method has straightforward applications for ESP problems when analysing polyhedral objects (e.g., in 3D imaging), of for ‘
9#
發(fā)表于 2025-3-23 04:52:06 | 只看該作者
10#
發(fā)表于 2025-3-23 09:22:31 | 只看該作者
The Continuous Setting,eckt meiner Ansicht nach in dem Nietzsche-Zitat eine Wahrheit, die auch für uns zutreffend ist und die weniger heroisch ausgedrückt lauten k?nnte: ?Wer die Herausforderungen seines Lebens einigerma?en souver?n und unbeschadet bestehen will, darf sich dafür bei aller Ernsthaftigkeit auch einen spiele
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 18:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
北川| 梅州市| 垫江县| 湘西| 琼海市| 焦作市| 林州市| 成安县| 开鲁县| 甘洛县| 云和县| 汾西县| 永平县| 塔河县| 丘北县| 磐安县| 六枝特区| 盐亭县| 屯留县| 英德市| 阳泉市| 鄢陵县| 美姑县| 比如县| 崇明县| 太康县| 古丈县| 海林市| 涪陵区| 榆社县| 商水县| 大埔县| 宁陵县| 大新县| 衡阳县| 孝昌县| 凤阳县| 平远县| 镇平县| 龙游县| 甘南县|