找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: A Course on Topological Vector Spaces; Jürgen Voigt Textbook 2020 Springer Nature Switzerland AG 2020 topology.convex spaces.polars.bipola

[復(fù)制鏈接]
樓主: 人工合成
31#
發(fā)表于 2025-3-26 22:05:19 | 只看該作者
The Reading Diaries: Four Case StudiesLocally convex spaces are introduced as topological vector spaces possessing a neighbourhood base of zero consisting of convex sets. It is shown that then the topology can also be defined by a set of semi-norms. In order to show this and other features, we first treat separation properties.
32#
發(fā)表于 2025-3-27 05:04:47 | 只看該作者
33#
發(fā)表于 2025-3-27 06:27:29 | 只看該作者
Cara Lynn Scheuer,Albert J. MillsWe start by discussing semi-reflexivity and Montel spaces and present a number of examples of function spaces. At the end we present duality properties for reflexive spaces and Montel spaces.
34#
發(fā)表于 2025-3-27 12:22:01 | 只看該作者
35#
發(fā)表于 2025-3-27 13:45:47 | 只看該作者
Hanna Salminen,Monika von BonsdorffThis chapter is a short survey on the technical properties mentioned in the title, for subsets of topological vector spaces and locally convex spaces.
36#
發(fā)表于 2025-3-27 20:17:41 | 只看該作者
Hanna Salminen,Monika von BonsdorffIn this and the following two chapters we discuss some surprising properties concerning the weak topology of Banach spaces. (However, the discussion will not be restricted to Banach spaces!)
37#
發(fā)表于 2025-3-28 01:28:14 | 只看該作者
Belinda Yuen,?pela Mo?nik,Winston YapAnother surprising result is Krein’s theorem, stating that the closed convex hull of a weakly compact set in a Banach space is again weakly compact. This will be shown in a much more general context. For the proof, the Pettis integral of vector-valued functions will be defined and applied.
38#
發(fā)表于 2025-3-28 05:24:50 | 只看該作者
39#
發(fā)表于 2025-3-28 08:11:09 | 只看該作者
40#
發(fā)表于 2025-3-28 12:32:17 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 23:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
奉节县| 墨竹工卡县| 丰镇市| 色达县| 额尔古纳市| 图木舒克市| 岚皋县| 上饶县| 晋江市| 城步| 荆州市| 余江县| 弥渡县| 蕉岭县| 新绛县| 新宁县| 易门县| 永靖县| 寿宁县| 商洛市| 临高县| 富源县| 资兴市| 双峰县| 南昌市| 牡丹江市| 云安县| 乌恰县| 文安县| 邓州市| 潞西市| 周口市| 溧阳市| 鹤壁市| 博罗县| 鸡西市| 家居| 榆林市| 定边县| 湖南省| 建阳市|