找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: A Course in the Theory of Groups; Derek J. S. Robinson Textbook 19931st edition Springer-Verlag New York, Inc. 1993 Abelian group.Finite.G

[復(fù)制鏈接]
樓主: 尤指植物
11#
發(fā)表于 2025-3-23 11:25:50 | 只看該作者
Maligne Gezwellen (kwaadaardig)In this chapter we shall study ways in which a group may be decomposed into a set of groups each of which is in some sense of simpler type. This idea, the resolution of a single complex structure into a number of less complicated structures, is encountered in almost all branches of algebra.
12#
發(fā)表于 2025-3-23 14:52:38 | 只看該作者
https://doi.org/10.1007/978-90-313-6621-7The theory of abelian groups is a branch of group theory with a flavour all of its own. Indeed, as László Fuchs has remarked, there are few properties with a more decisive influence on group structure than commutativity.
13#
發(fā)表于 2025-3-23 20:07:43 | 只看該作者
14#
發(fā)表于 2025-3-24 00:51:45 | 只看該作者
15#
發(fā)表于 2025-3-24 02:44:05 | 只看該作者
https://doi.org/10.1007/978-3-662-05621-9The aim of this chapter is to introduce the reader to the theory of representations of groups by linear transformations of a vector space or, equivalently, by matrices over a field. Aside from its intrinsic interest this theory has proved to be a most powerful tool for studying finite groups.
16#
發(fā)表于 2025-3-24 09:21:17 | 只看該作者
17#
發(fā)表于 2025-3-24 10:43:10 | 只看該作者
John Baldessari,Liam Gillick,Beatrix RufThe subject of this chapter is one of the basic techniques of finite group theory, the transfer homomorphism. Since the kernel of this homomorphism has abelian quotient group, it is especially useful in the study of insoluble groups. It will be seen that this technique underlies many deep and important theorems about finite groups
18#
發(fā)表于 2025-3-24 16:46:10 | 只看該作者
19#
發(fā)表于 2025-3-24 21:03:13 | 只看該作者
20#
發(fā)表于 2025-3-25 02:56:30 | 只看該作者
https://doi.org/10.1007/978-1-4684-0128-8Abelian group; Finite; Group theory; Permutation; algebra; automorphism; cohomology; finite group; group; gro
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 00:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
辰溪县| 武隆县| 静宁县| 广灵县| 贵定县| 德州市| 高尔夫| 偃师市| 澳门| 吴桥县| 阿巴嘎旗| 云林县| 赣州市| 旌德县| 乌恰县| 嵊州市| 揭东县| 杭锦旗| 德州市| 肥城市| 桐梓县| 博乐市| 彰化市| 榆社县| 土默特右旗| 雅安市| 定西市| 金塔县| 大关县| 贺兰县| 家居| 通辽市| 建平县| 静乐县| 桦南县| 宜阳县| 隆安县| 丹寨县| 娄底市| 太仓市| 绥滨县|