找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: A Course in Constructive Algebra; Ray Mines,Fred Richman,Wim Ruitenburg Book 1988 Springer Science+Business Media New York 1988 Galois th

[復(fù)制鏈接]
樓主: detumescence
21#
發(fā)表于 2025-3-25 06:10:22 | 只看該作者
22#
發(fā)表于 2025-3-25 08:17:09 | 只看該作者
Emmanuel Akyeampong,Pashington Obeng report that every polynomial of odd degree has a root, and that there is a digit that occurs infinitely often in the decimal expansion of π. In opposition to this is the constructive view of mathematics, which focuses attention on the dynamic interaction of the individual with the mathematical univ
23#
發(fā)表于 2025-3-25 12:24:55 | 只看該作者
24#
發(fā)表于 2025-3-25 17:14:26 | 只看該作者
25#
發(fā)表于 2025-3-25 23:40:51 | 只看該作者
26#
發(fā)表于 2025-3-26 03:39:15 | 只看該作者
Roman Grynberg,Fwasa K. Singogory of abelian groups, which are modules over the integers. The analogue of a finite-dimensional vector space is a finitely presented module over a principal ideal domain. A finitely presented module is given by matrix. In this section we prove some basic facts about matrices over a principal ideal d
27#
發(fā)表于 2025-3-26 05:55:18 | 只看該作者
Roman Grynberg,Fwasa K. Singogoin . that are integral over .. If every element of . is integral over ., then we say that . is an . of .. If . is equal to the integral closure of . in ., then we say that . is . .. If . is a field, the word . in the above definitions may be replaced by the word ..
28#
發(fā)表于 2025-3-26 09:34:12 | 只看該作者
29#
發(fā)表于 2025-3-26 14:33:05 | 只看該作者
https://doi.org/10.1007/978-94-009-1637-1on of ., but other definitions have led to proofs. Standard classical proofs of the Hilbert basis theorem are constructive, if by . we mean that every ideal is finitely generated, but only trivial rings are Noetherian in this sense from the constructive point of view. The first proof of a constructi
30#
發(fā)表于 2025-3-26 19:59:37 | 只看該作者
R. Delmas,J. P. Lacaux,D. Brocardare .-algebras, then a . from . to . is a ring homomorphism that is also a .-linear transformation. The term ., when applied to a structure S that is a vector space over ., like a .-algebra, signifies that S is a finite-dimensional vector space over ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 05:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
长沙县| 吉安县| 宜兰市| 罗田县| 江源县| 永清县| 方山县| 金川县| 会理县| 玉树县| 大邑县| 淄博市| 漳浦县| 东乌| 鹤峰县| 老河口市| 库尔勒市| 高青县| 张家界市| 乌拉特前旗| 永丰县| 汝南县| 城固县| 慈溪市| 噶尔县| 寻甸| 乌拉特前旗| 渭南市| 武安市| 南溪县| 天峻县| 衡水市| 新巴尔虎右旗| 杨浦区| 鄂伦春自治旗| 灵宝市| 揭西县| 雷山县| 府谷县| 昌都县| 瑞丽市|