找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: A Contrario Line Segment Detection; Rafael Grompone von Gioi Book 2014 The Author(s) 2014 A contrario framework.LSD algorithm.NFA approach

[復制鏈接]
樓主: 代表
11#
發(fā)表于 2025-3-23 10:00:38 | 只看該作者
Beate Ochsner,Sybilla Nikolow,Robert StockThis chapter describes in full detail the LSD algorithm [31, 35, 36] for line segment detection. It is based on the . framework described in the previous chapter, but instead of searching exhaustively for line segments, it uses the . approach, resulting in an efficient algorithm. The source code and an online demo for LSD are available at [36].
12#
發(fā)表于 2025-3-23 15:42:48 | 只看該作者
Erhard Schüttpelz,Beate Ochsner,Robert StockThis chapter presents some experiments to illustrate the behavior of the . line segment detector, indicating the good properties as well as its shortcomings. The results are compared with some existing approaches, concluding with an empirical evaluation of the algorithm computational time.
13#
發(fā)表于 2025-3-23 19:44:17 | 只看該作者
Fleisch – Wandlung, Wachstum, ZüchtungThe motivation for this ambitious project was to provide a foundation for computer vision based, like the Gestalt theory [46, 51, 61, 62], on a small set of fundamental principles. They identified the lack of a principle to guide the selection of detection thresholds and their main contribution was
14#
發(fā)表于 2025-3-23 23:31:22 | 只看該作者
15#
發(fā)表于 2025-3-24 02:54:13 | 只看該作者
https://doi.org/10.1007/978-1-4939-0575-1A contrario framework; LSD algorithm; NFA approach; parameter tuning; parameterless
16#
發(fā)表于 2025-3-24 06:32:13 | 只看該作者
2191-5768 od and bad results are illustrated on real and synthetic images. The issues involved, as well as the strategies used, are common to many geometrical structure detection problems and some possible extensions are discussed.978-1-4939-0574-4978-1-4939-0575-1Series ISSN 2191-5768 Series E-ISSN 2191-5776
17#
發(fā)表于 2025-3-24 13:23:00 | 只看該作者
Book 2014thout the need of any parameter tuning. The design criteria are thoroughly explained and the algorithm‘s good and bad results are illustrated on real and synthetic images. The issues involved, as well as the strategies used, are common to many geometrical structure detection problems and some possible extensions are discussed.
18#
發(fā)表于 2025-3-24 17:57:04 | 只看該作者
19#
發(fā)表于 2025-3-24 22:30:45 | 只看該作者
2191-5768 sion. This?book leads a detailed tour through the LSD algorithm, a line segment detector designed to be fully automatic. Based on the .a contrario. framework, the algorithm works efficiently without the need of any parameter tuning. The design criteria are thoroughly explained and the algorithm‘s go
20#
發(fā)表于 2025-3-25 01:09:05 | 只看該作者
Fleisch – Wandlung, Wachstum, Züchtungset of fundamental principles. They identified the lack of a principle to guide the selection of detection thresholds and their main contribution was to propose the . framework to cover this need. This chapter will introduce the . approach and its application to line segment detection.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-24 08:58
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
固镇县| 淳化县| 上思县| 和林格尔县| 沈丘县| 安吉县| 竹北市| 建瓯市| 孙吴县| 苍梧县| 项城市| 永靖县| 漯河市| 白朗县| 宜君县| 岳池县| 思南县| 大悟县| 工布江达县| 陆川县| 瑞丽市| 连山| 灌南县| 兴业县| 德昌县| 乌鲁木齐市| 凤冈县| 革吉县| 聂荣县| 康乐县| 邮箱| 凌云县| 玉树县| 永春县| 资兴市| 邻水| 沁阳市| 罗田县| 巴彦县| 睢宁县| 建阳市|