找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: A Concrete Introduction to Higher Algebra; Lindsay Childs Textbook 19791st edition Springer-Verlag New York Inc. 1979 algebra.automorphism

[復制鏈接]
樓主: 戰(zhàn)神
21#
發(fā)表于 2025-3-25 05:59:23 | 只看該作者
https://doi.org/10.1057/9781137319340The last chapter showed that primes are the building blocks of natural numbers, in the sense that any number is a product of primes. For this reason mathematicians throughout history have been fascinated by primes. In this chapter we shall describe a few of the most famous results on primes.
22#
發(fā)表于 2025-3-25 09:30:37 | 只看該作者
23#
發(fā)表于 2025-3-25 15:34:31 | 只看該作者
24#
發(fā)表于 2025-3-25 15:54:20 | 只看該作者
Dewey’s Aesthetics of Body-Mind FunctioningThere is a way of interpreting divisibility and congruences which leads to the invention of new “number” systems.
25#
發(fā)表于 2025-3-25 22:07:04 | 只看該作者
26#
發(fā)表于 2025-3-26 03:50:45 | 只看該作者
https://doi.org/10.1007/978-3-030-75305-4A famous and important theorem of number theory due to Fermat (c. 1640) gives, among other uses, a different way to find the inverse of a nonzero element of ?., . prime. We have already seen how to find the inverse of [.]. by solving . +. = 1, using Euclid’s algorithm and Bezout’s identity.
27#
發(fā)表于 2025-3-26 06:31:44 | 只看該作者
28#
發(fā)表于 2025-3-26 10:38:09 | 只看該作者
29#
發(fā)表于 2025-3-26 14:37:54 | 只看該作者
https://doi.org/10.1007/978-3-319-64030-3This is a famous theorem of number theory, so called because it was known to the ancient Chinese. Its proof is another application of the fact that the greatest common divisor of two numbers can be written as a linear combination of the two numbers.
30#
發(fā)表于 2025-3-26 19:37:29 | 只看該作者
On ‘Visual Implication’: Outline of a TheoryThis chapter may be read independently of Chapter 10, and may be omitted without loss of continuity.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-11 06:40
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
曲麻莱县| 山东省| 无为县| 定安县| 利辛县| 汉阴县| 山东省| 阳江市| 壶关县| 崇明县| 沿河| 手游| 广德县| 年辖:市辖区| 武邑县| 阿克陶县| 县级市| 恩平市| 西安市| 读书| 郯城县| 施秉县| 哈尔滨市| 安宁市| 竹北市| 万安县| 咸丰县| 兴义市| 巧家县| 那曲县| 双柏县| 太保市| 涞水县| 桦川县| 光泽县| 桂阳县| 新津县| 博罗县| 石狮市| 南召县| 泰和县|