找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: A Comprehensive Treatment of q-Calculus; Thomas Ernst Book 2012 Springer Basel 2012 q-Appell function.q-Bernoulli numbers.q-gamma function

[復(fù)制鏈接]
樓主: Monsoon
31#
發(fā)表于 2025-3-26 21:02:35 | 只看該作者
32#
發(fā)表于 2025-3-27 02:51:34 | 只看該作者
https://doi.org/10.1007/978-3-662-58237-4 polynomials are defined by the Rodrigues formula to enable an easy orthogonality relation. .-Legendre polynomials have been given before, but these do not have the same orthogonality range in the limit as ordinary Legendre polynomials. We also find .-difference equations for these polynomials.
33#
發(fā)表于 2025-3-27 06:20:01 | 只看該作者
34#
發(fā)表于 2025-3-27 12:11:29 | 只看該作者
35#
發(fā)表于 2025-3-27 16:41:34 | 只看該作者
36#
發(fā)表于 2025-3-27 21:09:36 | 只看該作者
Pr?operative Einsch?tzung und Pr?medikationach of Sections?.–., we focus on a certain such △. operator and find four formulas (the quartet of formulas) in each section. A?.-power sum of Carlitz plays a special role. We present tables and recurrence formulas for the two polynomial .-Stirling numbers.
37#
發(fā)表于 2025-3-27 22:14:46 | 只看該作者
R. Larsen,H. Sonntag,D. Kettlerl model. We illustrate with equations for the classical .-oscillator, the .-commutator, the Heisenberg .-uncertainty relation, and the creation and annihilation operators. The titles of the subsections are:
38#
發(fā)表于 2025-3-28 05:05:23 | 只看該作者
39#
發(fā)表于 2025-3-28 07:50:33 | 只看該作者
40#
發(fā)表于 2025-3-28 13:17:02 | 只看該作者
Front Matter to philosophical aspects of peace research neglected by the bulk of recent peace research, especially by trends which are led astray into the labyrinth of quasi-structural analysis, not probing beyond the superficial demonstration of so-called ‘structural violence’ (see under III hereafter). Moreov
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 16:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巴彦县| 太仓市| 新余市| 井研县| 宁城县| 育儿| 汤原县| 芜湖县| 霍州市| 贞丰县| 肥城市| 澄迈县| 敖汉旗| 济南市| 咸阳市| 建瓯市| 合江县| 哈巴河县| 石河子市| 南京市| 北票市| 天台县| 禹州市| 长白| 繁昌县| 明溪县| 凯里市| 当雄县| 盐城市| 禹州市| 罗源县| 鄢陵县| 青田县| 九台市| 晋江市| 崇仁县| 恩平市| 兰坪| 丹凤县| 舟曲县| 富平县|