找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: A Comprehensive Treatment of q-Calculus; Thomas Ernst Book 2012 Springer Basel 2012 q-Appell function.q-Bernoulli numbers.q-gamma function

[復(fù)制鏈接]
樓主: Monsoon
31#
發(fā)表于 2025-3-26 21:02:35 | 只看該作者
32#
發(fā)表于 2025-3-27 02:51:34 | 只看該作者
https://doi.org/10.1007/978-3-662-58237-4 polynomials are defined by the Rodrigues formula to enable an easy orthogonality relation. .-Legendre polynomials have been given before, but these do not have the same orthogonality range in the limit as ordinary Legendre polynomials. We also find .-difference equations for these polynomials.
33#
發(fā)表于 2025-3-27 06:20:01 | 只看該作者
34#
發(fā)表于 2025-3-27 12:11:29 | 只看該作者
35#
發(fā)表于 2025-3-27 16:41:34 | 只看該作者
36#
發(fā)表于 2025-3-27 21:09:36 | 只看該作者
Pr?operative Einsch?tzung und Pr?medikationach of Sections?.–., we focus on a certain such △. operator and find four formulas (the quartet of formulas) in each section. A?.-power sum of Carlitz plays a special role. We present tables and recurrence formulas for the two polynomial .-Stirling numbers.
37#
發(fā)表于 2025-3-27 22:14:46 | 只看該作者
R. Larsen,H. Sonntag,D. Kettlerl model. We illustrate with equations for the classical .-oscillator, the .-commutator, the Heisenberg .-uncertainty relation, and the creation and annihilation operators. The titles of the subsections are:
38#
發(fā)表于 2025-3-28 05:05:23 | 只看該作者
39#
發(fā)表于 2025-3-28 07:50:33 | 只看該作者
40#
發(fā)表于 2025-3-28 13:17:02 | 只看該作者
Front Matter to philosophical aspects of peace research neglected by the bulk of recent peace research, especially by trends which are led astray into the labyrinth of quasi-structural analysis, not probing beyond the superficial demonstration of so-called ‘structural violence’ (see under III hereafter). Moreov
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 23:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
陇南市| 福安市| 汤阴县| 胶州市| 双流县| 鱼台县| 邵东县| 修文县| 沅江市| 平度市| 皮山县| 新和县| 新化县| 开化县| 浑源县| 阿城市| 永寿县| 新田县| 克山县| 永胜县| 资溪县| 平山县| 德保县| 安新县| 湘阴县| 朝阳区| 娄底市| 织金县| 遂川县| 元朗区| 衡阳市| 班玛县| 松原市| 桂东县| 泸定县| 台北市| 睢宁县| 黎川县| 尤溪县| 瓮安县| 九台市|