找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Z User Workshop, York 1991; Proceedings of the S J. E. Nicholls Conference proceedings 1992 British Computer Society 1992 calculus.database

[復(fù)制鏈接]
查看: 10618|回復(fù): 34
樓主
發(fā)表于 2025-3-21 18:56:15 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Z User Workshop, York 1991
副標(biāo)題Proceedings of the S
編輯J. E. Nicholls
視頻videohttp://file.papertrans.cn/1061/1060385/1060385.mp4
叢書名稱Workshops in Computing
圖書封面Titlebook: Z User Workshop, York 1991; Proceedings of the S J. E. Nicholls Conference proceedings 1992 British Computer Society 1992 calculus.database
描述In ordinary mathematics, an equation can be written down which is syntactically correct, but for which no solution exists. For example, consider the equation x = x + 1 defined over the real numbers; there is no value of x which satisfies it. Similarly it is possible to specify objects using the formal specification language Z [3,4], which can not possibly exist. Such specifications are called inconsistent and can arise in a number of ways. Example 1 The following Z specification of a functionf, from integers to integers "f x : ~ 1 x ~ O· fx = x + 1 (i) "f x : ~ 1 x ~ O· fx = x + 2 (ii) is inconsistent, because axiom (i) gives f 0 = 1, while axiom (ii) gives f 0 = 2. This contradicts the fact that f was declared as a function, that is, f must have a unique result when applied to an argument. Hence no suchfexists. Furthermore, iff 0 = 1 andfO = 2 then 1 = 2 can be deduced! From 1 = 2 anything can be deduced, thus showing the danger of an inconsistent specification. Note that all examples and proofs start with the word Example or Proof and end with the symbol.1.
出版日期Conference proceedings 1992
關(guān)鍵詞calculus; database; formal method; formal methods; high-integrity software; logic; programming; structured
版次1
doihttps://doi.org/10.1007/978-1-4471-3203-5
isbn_softcover978-3-540-19780-5
isbn_ebook978-1-4471-3203-5Series ISSN 1431-1682
issn_series 1431-1682
copyrightBritish Computer Society 1992
The information of publication is updating

書目名稱Z User Workshop, York 1991影響因子(影響力)




書目名稱Z User Workshop, York 1991影響因子(影響力)學(xué)科排名




書目名稱Z User Workshop, York 1991網(wǎng)絡(luò)公開度




書目名稱Z User Workshop, York 1991網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Z User Workshop, York 1991被引頻次




書目名稱Z User Workshop, York 1991被引頻次學(xué)科排名




書目名稱Z User Workshop, York 1991年度引用




書目名稱Z User Workshop, York 1991年度引用學(xué)科排名




書目名稱Z User Workshop, York 1991讀者反饋




書目名稱Z User Workshop, York 1991讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:04:04 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:11:41 | 只看該作者
Workshops in Computinghttp://image.papertrans.cn/xyz/image/1060385.jpg
地板
發(fā)表于 2025-3-22 05:04:39 | 只看該作者
5#
發(fā)表于 2025-3-22 11:22:26 | 只看該作者
Conference proceedings 1992t have a unique result when applied to an argument. Hence no suchfexists. Furthermore, iff 0 = 1 andfO = 2 then 1 = 2 can be deduced! From 1 = 2 anything can be deduced, thus showing the danger of an inconsistent specification. Note that all examples and proofs start with the word Example or Proof and end with the symbol.1.
6#
發(fā)表于 2025-3-22 13:40:05 | 只看該作者
7#
發(fā)表于 2025-3-22 17:29:59 | 只看該作者
8#
發(fā)表于 2025-3-23 00:20:29 | 只看該作者
9#
發(fā)表于 2025-3-23 05:11:59 | 只看該作者
10#
發(fā)表于 2025-3-23 09:23:07 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 05:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
衡东县| 贵阳市| 苍山县| 武定县| 博野县| 昭苏县| 武川县| 英超| 朔州市| 满洲里市| 霍邱县| 衡东县| 丽水市| 和林格尔县| 报价| 湖口县| 故城县| 曲松县| 桑植县| 锡林郭勒盟| 莆田市| 牡丹江市| 锡林浩特市| 营口市| 青川县| 霍山县| 宜兰县| 永康市| 红桥区| 阳朔县| 衡水市| 湖南省| 朝阳市| 枣阳市| 西乌| 沅江市| 玉林市| 固安县| 南城县| 盈江县| 明溪县|