找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Women in Numbers Europe III; Research Directions Alina Carmen Cojocaru,Sorina Ionica,Elisa Lorenzo Book 2021 The Authors and the Associat

[復制鏈接]
樓主: JADE
31#
發(fā)表于 2025-3-26 21:37:35 | 只看該作者
32#
發(fā)表于 2025-3-27 01:13:53 | 只看該作者
33#
發(fā)表于 2025-3-27 08:01:47 | 只看該作者
34#
發(fā)表于 2025-3-27 09:32:44 | 只看該作者
35#
發(fā)表于 2025-3-27 14:51:59 | 只看該作者
Adelina Manz??eanu,Rachel Newton,Ekin Ozman,Nicole Sutherland,Rabia Gül?ah Uysalpproach of collaborative processes that will appeal to both This publication focuses on the conditions for promising collaboration. Collaboration is becoming a dominant instrument in today‘s economy and society and manifests itself in many shapes and forms. It is a challenging instrument which still
36#
發(fā)表于 2025-3-27 18:08:46 | 只看該作者
Diana Savin,Vincenzo Acciaroes of employees, and to truly revolutionize the role of business in the world. Creating Enlightened Organizations is the first book to provide a truly comprehensive approach to creating an organization designed to unleash full human potential in the workplace. Businesses have learned how to involve
37#
發(fā)表于 2025-3-27 23:00:36 | 只看該作者
From ,-modular to ,-adic Langlands Correspondences for ,: Deformations in the Non-supercuspidal CasThis paper surveys what is known about (conjectural) .-adic and .-modular semisimple Langlands correspondences in the non-supercuspidal setting for the unramified quasi-split unitary group .. It focuses in particular on the potential of deformation theory to relate these correspondences.
38#
發(fā)表于 2025-3-28 05:49:25 | 只看該作者
Integers Represented by Ternary Quadratic Forms,In the case of the representation of an integer by an indefinite ternary quadratic form, the violation of the integral Hasse principle can be explained via the Brauer-Manin obstruction. In this note, we study the occurrences of this phenomenon for several families of non-diagonal ternary quadratic forms.
39#
發(fā)表于 2025-3-28 06:24:48 | 只看該作者
40#
發(fā)表于 2025-3-28 11:40:35 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 09:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
林芝县| 兖州市| 鄂伦春自治旗| 哈巴河县| 敦煌市| 阳西县| 齐齐哈尔市| 泸定县| 馆陶县| 仁寿县| 垦利县| 普安县| 如东县| 炉霍县| 商城县| 绥德县| 黄石市| 曲水县| 阜南县| 兴城市| 顺义区| 英超| 潜山县| 原平市| 石棉县| 留坝县| 河北省| 嘉黎县| 澎湖县| 鄯善县| 华亭县| 玉门市| 铜梁县| 和顺县| 宕昌县| 五河县| 梧州市| 崇文区| 土默特右旗| 太谷县| 闵行区|