找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Women in Numbers Europe II; Contributions to Num Irene I. Bouw,Ekin Ozman,Rachel Newton Conference proceedings 2018 The Author(s) and the A

[復(fù)制鏈接]
樓主: 誓約
11#
發(fā)表于 2025-3-23 09:53:39 | 只看該作者
2364-5733 researchers in number theory.Provides an easily accessible iInspired by the September 2016 conference of the same name, this second volume highlights recent research in a wide range of topics in contemporary number theory and arithmetic geometry. Research reports from projects started at the confere
12#
發(fā)表于 2025-3-23 15:20:10 | 只看該作者
Non-ordinary Curves with a Prym Variety of Low ,-Rank,uble cover .?:?.?→?. for which .. has .-rank 0 (and is thus supersingular); for 3?≤?.?≤?19, we verify the same for each 0?≤?.?≤?3. Using theoretical results about .-rank stratifications of moduli spaces, we prove, for small . and arbitrary .?≥?3, that there exists an unramified double cover .?:?.?→?. such that both . and .. have small .-rank.
13#
發(fā)表于 2025-3-23 18:45:02 | 只看該作者
Elliptic Fibrations on Covers of the Elliptic Modular Surface of Level 5,or which the double cover is branched over the two reducible fibers of type .. and for which it is branched over two smooth fibers, giving a complete list of elliptic fibrations for these two scenarios.
14#
發(fā)表于 2025-3-24 00:37:51 | 只看該作者
15#
發(fā)表于 2025-3-24 05:04:49 | 只看該作者
The a-Number of Hyperelliptic Curves,his paper, we show that this bound can be lowered to .?
16#
發(fā)表于 2025-3-24 07:32:04 | 只看該作者
17#
發(fā)表于 2025-3-24 14:09:23 | 只看該作者
Reductions of Algebraic Integers II,ng the following condition: the reduction of . modulo . is well-defined and has size coprime to .. We show that the natural density of this set is a computable rational number by reducing to the case where . is prime, case which has been treated in the previous work . (joint with Christophe Debry, J
18#
發(fā)表于 2025-3-24 16:50:07 | 只看該作者
19#
發(fā)表于 2025-3-24 19:09:56 | 只看該作者
20#
發(fā)表于 2025-3-25 01:54:06 | 只看該作者
The a-Number of Hyperelliptic Curves,, over which the curve is defined. It was proven by Elkin that for a genus . hyperelliptic curve . to have ..?=?.???1, the genus is bounded by .. In this paper, we show that this bound can be lowered to .?
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 10:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大足县| 西城区| 随州市| 垦利县| 城固县| 郎溪县| 九江市| 隆回县| 共和县| 屏东县| 济南市| 新津县| 大余县| 宕昌县| 浙江省| 金沙县| 海丰县| 湛江市| 河北区| 井冈山市| 西和县| 承德市| 濮阳县| 固安县| 凤凰县| 盐城市| 烟台市| 绵竹市| 海兴县| 卓尼县| 清徐县| 永康市| 乐平市| 通山县| 黄冈市| 武鸣县| 长垣县| 汤阴县| 东海县| 读书| 吴江市|