找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Women in Commutative Algebra; Proceedings of the 2 Claudia Miller,Janet Striuli,Emily E. Witt Book 2021 The Author(s) and the Association f

[復(fù)制鏈接]
查看: 14016|回復(fù): 59
樓主
發(fā)表于 2025-3-21 19:23:24 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Women in Commutative Algebra
副標(biāo)題Proceedings of the 2
編輯Claudia Miller,Janet Striuli,Emily E. Witt
視頻videohttp://file.papertrans.cn/1031/1030351/1030351.mp4
概述Contains engaging articles explaining cutting-edge mathematics.Features both contributions with important advances and surveys of new mathematics.Reflects both independent and group research
叢書名稱Association for Women in Mathematics Series
圖書封面Titlebook: Women in Commutative Algebra; Proceedings of the 2 Claudia Miller,Janet Striuli,Emily E. Witt Book 2021 The Author(s) and the Association f
描述.This volume features contributions from the Women in Commutative Algebra (WICA) workshop held at the Banff International Research Station (BIRS) from October 20-25, 2019, run by the Pacific Institute of Mathematical Sciences (PIMS). The purpose of this meeting was for groups of mathematicians to work on joint research projects in the mathematical field of Commutative Algebra and continue these projects together long-distance after its close. The chapters include both direct results and surveys, with contributions from?research groups and individual authors..The WICA conference was the first of its kind in the large and vibrant area of Commutative Algebra, and this volume is intended to showcase its important results and to encourage further collaboration among marginalized practitioners in the field. It will be of interest to a wide range of researchers, from PhD students to senior experts.?.
出版日期Book 2021
關(guān)鍵詞combinatorics; differential operators; methods in prime characteristic; Rees algebras; tropical commutat
版次1
doihttps://doi.org/10.1007/978-3-030-91986-3
isbn_softcover978-3-030-91988-7
isbn_ebook978-3-030-91986-3Series ISSN 2364-5733 Series E-ISSN 2364-5741
issn_series 2364-5733
copyrightThe Author(s) and the Association for Women in Mathematics 2021
The information of publication is updating

書目名稱Women in Commutative Algebra影響因子(影響力)




書目名稱Women in Commutative Algebra影響因子(影響力)學(xué)科排名




書目名稱Women in Commutative Algebra網(wǎng)絡(luò)公開度




書目名稱Women in Commutative Algebra網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Women in Commutative Algebra被引頻次




書目名稱Women in Commutative Algebra被引頻次學(xué)科排名




書目名稱Women in Commutative Algebra年度引用




書目名稱Women in Commutative Algebra年度引用學(xué)科排名




書目名稱Women in Commutative Algebra讀者反饋




書目名稱Women in Commutative Algebra讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:26:14 | 只看該作者
Women in Commutative Algebra978-3-030-91986-3Series ISSN 2364-5733 Series E-ISSN 2364-5741
板凳
發(fā)表于 2025-3-22 01:00:13 | 只看該作者
Association for Women in Mathematics Serieshttp://image.papertrans.cn/w/image/1030351.jpg
地板
發(fā)表于 2025-3-22 05:27:43 | 只看該作者
https://doi.org/10.1007/978-3-030-91986-3combinatorics; differential operators; methods in prime characteristic; Rees algebras; tropical commutat
5#
發(fā)表于 2025-3-22 11:01:35 | 只看該作者
,On Gerko’s Strongly Tor-independent Modules,Gerko proves that if an artinian local ring . possesses a sequence of strongly Tor-independent modules of length ., then .. This generalizes readily to Cohen–Macaulay rings. We present a complement to this result for non-Cohen–Macaulay rings.
6#
發(fā)表于 2025-3-22 13:05:58 | 只看該作者
7#
發(fā)表于 2025-3-22 17:45:11 | 只看該作者
Simplicial Resolutions for the Second Power of Square-Free Monomial Ideals,Given a square-free monomial ideal ., we define a simplicial complex labeled by the generators of .. which supports a free resolution of ... As a consequence, we obtain upper bounds on the Betti numbers of the second power of any square-free monomial ideal.
8#
發(fā)表于 2025-3-22 22:26:26 | 只看該作者
The Variety Defined by the Matrix of Diagonals is ,-Pure,We prove that the variety defined by the determinant of the matrix formed by the diagonals of powers of a given matrix is .-pure for matrices of all sizes and in all positive prime characteristics. Moreover, we find a homogeneous system of parameters for it.
9#
發(fā)表于 2025-3-23 05:21:43 | 只看該作者
10#
發(fā)表于 2025-3-23 07:31:13 | 只看該作者
Claudia Miller,Janet Striuli,Emily E. WittContains engaging articles explaining cutting-edge mathematics.Features both contributions with important advances and surveys of new mathematics.Reflects both independent and group research
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 13:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
克什克腾旗| 黄梅县| 收藏| 富裕县| 江达县| 铁岭市| 玉树县| 德惠市| 沈阳市| 仁怀市| 固原市| 旬邑县| 会东县| 舟曲县| 灵丘县| 奎屯市| 明溪县| 柳江县| 邢台市| 济宁市| 定南县| 延川县| 巫山县| 大方县| 聂拉木县| 凤城市| 甘南县| 大厂| 万宁市| 龙海市| 合川市| 苏尼特右旗| 枝江市| 盘锦市| 礼泉县| 九龙坡区| 张家口市| 南江县| 沂源县| 云阳县| 麻城市|