找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Women in Analysis and PDE; Marianna Chatzakou,Michael Ruzhansky,Diana Stoeva Conference proceedings 2024 The Editor(s) (if applicable) and

[復(fù)制鏈接]
樓主: deflate
41#
發(fā)表于 2025-3-28 15:29:21 | 只看該作者
42#
發(fā)表于 2025-3-28 22:43:26 | 只看該作者
43#
發(fā)表于 2025-3-29 00:36:13 | 只看該作者
978-3-031-57007-0The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
44#
發(fā)表于 2025-3-29 06:38:09 | 只看該作者
45#
發(fā)表于 2025-3-29 07:59:38 | 只看該作者
Recovery of an Initial Condition from Later Time Samples,n. This framework combines spatiotemporal samples to produce various states of approximations and eventually reconstructs the solution exactly. Our model covers multiple initial value problems under the assumption that the initial conditions function is in a select function class.
46#
發(fā)表于 2025-3-29 11:30:43 | 只看該作者
47#
發(fā)表于 2025-3-29 17:40:41 | 只看該作者
48#
發(fā)表于 2025-3-29 23:44:51 | 只看該作者
On Octonionic Harmonic Projection Operators,th .. In this paper, we start to study these projectors in the octonionic setting, that is, when . and .. We also formulate a conjecture about the norm of harmonic projection operators, considered as operators from . onto ., for . and ..
49#
發(fā)表于 2025-3-30 00:54:26 | 只看該作者
50#
發(fā)表于 2025-3-30 06:22:14 | 只看該作者
,On the Green’s Function of the Perturbed Laplace-Beltrami Operator with a Finite Number of Punctures, some properties of Green’s function for the Laplace-Beltrami operator on the two-dimensional sphere in the three-dimensional Euclidean space, which have previously been studied in detail, are presented here. The Green’s function of the Laplace-Beltrami operator on the two-dimensional sphere with a finite number of punctured points is presented.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 07:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
慈溪市| 邵武市| 历史| 定州市| 闽侯县| 内黄县| 巴彦淖尔市| 射洪县| 延边| 神木县| 蒙城县| 开鲁县| 尖扎县| 三门县| 夏津县| 兴宁市| 西峡县| 周口市| 揭东县| 合山市| 灵川县| 宝丰县| 湖南省| 郸城县| 密山市| 平湖市| 丰县| 马龙县| 榆树市| 台南市| 宁南县| 泰和县| 特克斯县| 平潭县| 巴青县| 武汉市| 琼结县| 安康市| 民乐县| 永昌县| 克山县|