找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Women in Analysis and PDE; Marianna Chatzakou,Michael Ruzhansky,Diana Stoeva Conference proceedings 2024 The Editor(s) (if applicable) and

[復(fù)制鏈接]
樓主: deflate
21#
發(fā)表于 2025-3-25 05:56:19 | 只看該作者
On Octonionic Harmonic Projection Operators,th .. In this paper, we start to study these projectors in the octonionic setting, that is, when . and .. We also formulate a conjecture about the norm of harmonic projection operators, considered as operators from . onto ., for . and ..
22#
發(fā)表于 2025-3-25 11:26:11 | 只看該作者
23#
發(fā)表于 2025-3-25 13:46:37 | 只看該作者
Global Analytic Solutions and Symmetric Waves of the 0-Equation,of conservation laws, we first discuss the conditions for obtaining a unique global solution for initial data in Sobolev spaces. Then we restrict the space for the initial data to improve the regularity of the solution. Finally, we conclude with the characterization of symmetric solutions as traveli
24#
發(fā)表于 2025-3-25 19:12:57 | 只看該作者
,On the Green’s Function of the Perturbed Laplace-Beltrami Operator with a Finite Number of Punctures, some properties of Green’s function for the Laplace-Beltrami operator on the two-dimensional sphere in the three-dimensional Euclidean space, which have previously been studied in detail, are presented here. The Green’s function of the Laplace-Beltrami operator on the two-dimensional sphere with
25#
發(fā)表于 2025-3-25 20:42:15 | 只看該作者
26#
發(fā)表于 2025-3-26 00:22:29 | 只看該作者
On Hyperbolic Equations with Space-Dependent Coefficients: , Well-Posedness and Levi Conditions,ns with space dependent coefficients in any space dimension. We prove the Sobolev well-posedness of the corresponding Cauchy problem (with loss of derivatives due to the multiplicities) under suitable Levi conditions on the lower order terms. These conditions generalise the well-known Olienik condit
27#
發(fā)表于 2025-3-26 05:28:53 | 只看該作者
28#
發(fā)表于 2025-3-26 12:19:03 | 只看該作者
29#
發(fā)表于 2025-3-26 14:10:36 | 只看該作者
2297-0215 ion of women mathematicians in Analysis and PDEs.Provides anSince 2019 Ghent Analysis & PDE Center (GAPC) has been organising international workshops, conferences, seminars, and other scientific events covering a wide range of pioneering topics in Analysis and PDEs. In the winter of 2023, the GAPC d
30#
發(fā)表于 2025-3-26 16:53:49 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 18:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鹤庆县| 蒲江县| 黄石市| 金平| 沧州市| 青田县| 康定县| 定南县| 启东市| 澄迈县| 曲阳县| 北碚区| 庆阳市| 荆门市| 房产| 色达县| 怀柔区| 象州县| 宣武区| 阳信县| 新津县| 泽普县| 塘沽区| 承德市| 双辽市| 绥宁县| 理塘县| 康乐县| 肥乡县| 彰化市| 库伦旗| 抚远县| 临武县| 仁化县| 射洪县| 武宣县| 资阳市| 泾阳县| 泽州县| 同心县| 个旧市|