找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Cech and Steenrod Homotopy Theories with Applications to Geometric Topology; David A. Edwards,Harold M. Hastings Book 1976 Springer-Verlag

[復(fù)制鏈接]
查看: 13498|回復(fù): 42
樓主
發(fā)表于 2025-3-21 18:02:21 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Cech and Steenrod Homotopy Theories with Applications to Geometric Topology
影響因子2023David A. Edwards,Harold M. Hastings
視頻videohttp://file.papertrans.cn/103/102644/102644.mp4
學(xué)科分類Lecture Notes in Mathematics
圖書封面Titlebook: Cech and Steenrod Homotopy Theories with Applications to Geometric Topology;  David A. Edwards,Harold M. Hastings Book 1976 Springer-Verlag
Pindex Book 1976
The information of publication is updating

書目名稱Cech and Steenrod Homotopy Theories with Applications to Geometric Topology影響因子(影響力)




書目名稱Cech and Steenrod Homotopy Theories with Applications to Geometric Topology影響因子(影響力)學(xué)科排名




書目名稱Cech and Steenrod Homotopy Theories with Applications to Geometric Topology網(wǎng)絡(luò)公開度




書目名稱Cech and Steenrod Homotopy Theories with Applications to Geometric Topology網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Cech and Steenrod Homotopy Theories with Applications to Geometric Topology被引頻次




書目名稱Cech and Steenrod Homotopy Theories with Applications to Geometric Topology被引頻次學(xué)科排名




書目名稱Cech and Steenrod Homotopy Theories with Applications to Geometric Topology年度引用




書目名稱Cech and Steenrod Homotopy Theories with Applications to Geometric Topology年度引用學(xué)科排名




書目名稱Cech and Steenrod Homotopy Theories with Applications to Geometric Topology讀者反饋




書目名稱Cech and Steenrod Homotopy Theories with Applications to Geometric Topology讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:26:40 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:25:02 | 只看該作者
地板
發(fā)表于 2025-3-22 08:33:01 | 只看該作者
Cech and Steenrod Homotopy Theories with Applications to Geometric Topology978-3-540-38103-7Series ISSN 0075-8434 Series E-ISSN 1617-9692
5#
發(fā)表于 2025-3-22 09:45:39 | 只看該作者
0075-8434 Overview: 978-3-540-07863-0978-3-540-38103-7Series ISSN 0075-8434 Series E-ISSN 1617-9692
6#
發(fā)表于 2025-3-22 14:54:19 | 只看該作者
Front Matter more than 300 languages. Although AIANs are diverse in composition and cultural beliefs, they have a shared history of oppression, discrimination, and subjugation in the United States. The majority of AIANs reside in metropolitan areas, less than half (34%) live on reservations or tribal lands (Wea
7#
發(fā)表于 2025-3-22 18:31:00 | 只看該作者
8#
發(fā)表于 2025-3-22 21:31:31 | 只看該作者
Background,ring to become licensed and/or certified typically requires extensive documentation and preparatory study prior to sitting for examinations to demonstrate one’s competence. The soon-to-be graduate has decisions to make requiring a clear understanding of the requirements for licensure/certification a
9#
發(fā)表于 2025-3-23 04:41:10 | 只看該作者
The model structure on pro-spaces,any discovered that some cultures and societies marginalized their disabled population and excluded them from those social services normally made available to their able-bodied citizenry. In response to this marginalization, and guided by their charitable philanthropic and religious beliefs, mission
10#
發(fā)表于 2025-3-23 06:28:30 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 22:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宕昌县| 利川市| 新巴尔虎左旗| 工布江达县| 汝阳县| 崇义县| 保靖县| 兰考县| 吴江市| 馆陶县| 灵丘县| 昂仁县| 巴东县| 资兴市| 和政县| 泉州市| 惠安县| 邵阳县| 化隆| 长泰县| 布尔津县| 曲水县| 南宫市| 霍城县| 金山区| 聂荣县| 怀来县| 鲁山县| 岳阳县| 兴山县| 屯昌县| 察雅县| 葵青区| 泊头市| 德惠市| 南丰县| 武威市| 东乡族自治县| 天门市| 仙桃市| 五常市|