找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Weil Conjectures, Perverse Sheaves and ?-adic Fourier Transform; Reinhardt Kiehl,Rainer Weissauer Book 2001 Springer-Verlag Berlin Heidelb

[復制鏈接]
樓主: 實體
31#
發(fā)表于 2025-3-26 22:01:42 | 只看該作者
The Formalism of Derived Categories,of the category .(.), the notion of (short) exact sequences of complexes no longer exists and has to be replaced by the notion of distinguished triangles, which itself derives from the concept of mapping cones.
32#
發(fā)表于 2025-3-27 03:23:53 | 只看該作者
The Formalism of Derived Categories,of the category .(.), the notion of (short) exact sequences of complexes no longer exists and has to be replaced by the notion of distinguished triangles, which itself derives from the concept of mapping cones.
33#
發(fā)表于 2025-3-27 08:27:24 | 只看該作者
The Formalism of Derived Categories,ory is defined by making quasiisomorphisms into isomorphisms and this allows to identify complexes with their resolutions. Recall, that a complex map .′ → . is a quasiisomorphism, if the induced cohomology morphisms ..(.’) → ..(.)are isomorphisms in all degrees. However, by taking this localization
34#
發(fā)表于 2025-3-27 10:00:55 | 只看該作者
35#
發(fā)表于 2025-3-27 17:32:48 | 只看該作者
36#
發(fā)表于 2025-3-27 20:22:51 | 只看該作者
The Formalism of Derived Categories,ory is defined by making quasiisomorphisms into isomorphisms and this allows to identify complexes with their resolutions. Recall, that a complex map .′ → . is a quasiisomorphism, if the induced cohomology morphisms ..(.’) → ..(.)are isomorphisms in all degrees. However, by taking this localization
37#
發(fā)表于 2025-3-27 22:09:02 | 只看該作者
Perverse Sheaves,sky-MacPherson, which originally was not defined in terms of sheaf theory but rather using explicit chain complexes. Perhaps stimulated by the Kazhdan-Lusztig conjectures it was Deligne, who gave a reformulation of the notion of intersection cohomology within the setting of sheaf theory. In this for
38#
發(fā)表于 2025-3-28 03:46:56 | 只看該作者
39#
發(fā)表于 2025-3-28 09:35:04 | 只看該作者
40#
發(fā)表于 2025-3-28 13:17:13 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 08:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
池州市| 阿荣旗| 富民县| 佳木斯市| 诸暨市| 镇江市| 开封县| 安远县| 辽宁省| 鹤岗市| 秦皇岛市| 海淀区| 陇西县| 额济纳旗| 阿鲁科尔沁旗| 化德县| 从江县| 福鼎市| 吉林市| 西充县| 原阳县| 浦江县| 屏东县| 沙田区| 上思县| 应用必备| 德江县| 定安县| 襄垣县| 紫金县| 通河县| 武宣县| 灵丘县| 稷山县| 辽阳市| 抚远县| 五家渠市| 高雄市| 阿拉善盟| 双牌县| 商南县|