找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Weighted Polynomial Approximation and Numerical Methods for Integral Equations; Peter Junghanns,Giuseppe Mastroianni,Incoronata No Book 20

[復(fù)制鏈接]
樓主: ALOOF
21#
發(fā)表于 2025-3-25 04:35:22 | 只看該作者
22#
發(fā)表于 2025-3-25 11:22:36 | 只看該作者
Mapping Properties of Some Classes of Integral Operators,Here, in preparation of the following chapters on the numerical solution of different kinds of integral equations, we present certain mapping properties of the involved integral and related operators. In this context the Jacobi polynomials play an important role. That is why we first deal with these polynomials.
23#
發(fā)表于 2025-3-25 12:08:15 | 只看該作者
Mapping Properties of Some Classes of Integral Operators,Here, in preparation of the following chapters on the numerical solution of different kinds of integral equations, we present certain mapping properties of the involved integral and related operators. In this context the Jacobi polynomials play an important role. That is why we first deal with these polynomials.
24#
發(fā)表于 2025-3-25 16:27:20 | 只看該作者
Collocation and Collocation-Quadrature Methods for Strongly Singular Integral Equations,In this chapter collocation and collocation-quadrature methods, based on some interpolation and quadrature processes considered in Chap. ., are applied to strongly singular integral equations like linear and nonlinear Cauchy singular integral equations, integral equations with strongly fixed singularities, and hypersingular integral equations.
25#
發(fā)表于 2025-3-25 23:12:55 | 只看該作者
Applications,This chapter is devoted to some concrete applications of the theory presented in the previous chapter to examples from two-dimensional elasticity theory, airfoil theory, and free boundary seepage flow problems.
26#
發(fā)表于 2025-3-26 01:55:45 | 只看該作者
27#
發(fā)表于 2025-3-26 07:09:03 | 只看該作者
Hints and Answers to the Exercises,For .?∈., ..?∈.. and ..→., we have necessarily (and so uniquely) to define . in order to guarantee the continuity of ..
28#
發(fā)表于 2025-3-26 09:48:58 | 只看該作者
29#
發(fā)表于 2025-3-26 16:33:34 | 只看該作者
30#
發(fā)表于 2025-3-26 18:44:14 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 23:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阜宁县| 北流市| 扬中市| 沙河市| 岚皋县| 华安县| 浦东新区| 平和县| 新兴县| 株洲市| 玛纳斯县| 澄城县| 长垣县| 孝义市| 招远市| 永胜县| 扎鲁特旗| 宣恩县| 宽城| 阜新市| 大姚县| 辽源市| 宜宾县| 石柱| 栖霞市| 临清市| 白银市| 禹州市| 昌江| 东港市| 稻城县| 比如县| 汉阴县| 灵川县| 双流县| 镇巴县| 顺义区| 兴国县| 米林县| 镇康县| 松潘县|