找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Weighted Automata, Formal Power Series and Weighted Logic; Laura Wirth Book 2022 The Editor(s) (if applicable) and The Author(s), under ex

[復(fù)制鏈接]
樓主: 呻吟
11#
發(fā)表于 2025-3-23 11:02:36 | 只看該作者
Languages, Automata and Monadic Second-Order Logic,he starting point of those in the weighted setting that will be considered in the subsequent chapters. Throughout this chapter, we further establish a clear overview over the classical results from Theoretical Computer Science, whose extensions and generalizations we will derive in the subsequent chapters.
12#
發(fā)表于 2025-3-23 14:31:40 | 只看該作者
13#
發(fā)表于 2025-3-23 19:19:36 | 只看該作者
14#
發(fā)表于 2025-3-23 23:40:26 | 只看該作者
15#
發(fā)表于 2025-3-24 02:54:52 | 只看該作者
,The Kleene–Schützenberger Theorem,ve extensions of the classical ones. In doing so, he extended the language-theoretic concept of recognizability to formal power series with coefficients in an arbitrary semiring. On the other hand, Schützenberger also investigated rational power series, which form a generalization of rational languages.
16#
發(fā)表于 2025-3-24 09:06:52 | 只看該作者
Weighted Monadic Second-Order Logic and Weighted Automata,eighted automata, and characterized their behaviors as rational formal power series. Hence, he established a generalization of Kleene’s Theorem, which we have presented in Chapter 4. In 2005, Droste and Gastin [5] extended the Büchi–Elgot–Trakhtenbrot Theorem to the realm of formal power series.
17#
發(fā)表于 2025-3-24 11:36:39 | 只看該作者
BestMastershttp://image.papertrans.cn/w/image/1021967.jpg
18#
發(fā)表于 2025-3-24 15:53:47 | 只看該作者
19#
發(fā)表于 2025-3-24 22:26:45 | 只看該作者
978-3-658-39322-9The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Fachmedien Wies
20#
發(fā)表于 2025-3-25 02:41:17 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 21:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宁津县| 舞阳县| 社旗县| 阿合奇县| 嵊州市| 响水县| 白水县| 铁力市| 呈贡县| 麦盖提县| 蒙自县| 色达县| 邵阳县| 曲靖市| 炎陵县| 通化县| 乐清市| 井陉县| 黄平县| 泌阳县| 彩票| 哈巴河县| 仪征市| 九寨沟县| 浮山县| 江油市| 博野县| 西平县| 顺义区| 大冶市| 工布江达县| 清新县| 唐海县| 阳信县| 怀化市| 乐都县| 龙江县| 嘉祥县| 丁青县| 张北县| 贵德县|