找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Web and Wireless Geographical Information Systems; 20th International S Mir Abolfazl Mostafavi,Géraldine Del Mondo Conference proceedings 2

[復制鏈接]
樓主: 拼圖游戲
31#
發(fā)表于 2025-3-26 21:22:34 | 只看該作者
Lasith Niroshan,James D. Carswellof the Transvaal, fundamentally altered its attitude towards both the Republic and the territories around it. As Baron Oswald von Richthofen, the Under Secretary of State for Foreign Affairs, succinctly put it: ‘We are letting England have South Africa.’. This statement, an explicit declaration of G
32#
發(fā)表于 2025-3-27 04:47:53 | 只看該作者
33#
發(fā)表于 2025-3-27 07:59:09 | 只看該作者
34#
發(fā)表于 2025-3-27 12:42:03 | 只看該作者
Towards Integration of Spatial Context in Building Energy Demand Assessment Supported by CityGML Enes to represent and manage the required spatiotemporal information for BEMs and feed a knowledgebase that can be used in WSN deployment optimization algorithms. Finally, the paper presents and discusses a case study to highlight the advantages and limitations of the proposed approach.
35#
發(fā)表于 2025-3-27 15:47:08 | 只看該作者
36#
發(fā)表于 2025-3-27 18:11:12 | 只看該作者
37#
發(fā)表于 2025-3-28 02:00:53 | 只看該作者
38#
發(fā)表于 2025-3-28 02:04:50 | 只看該作者
Mobility Data Analytics with?KNOT: The KNime mObility Toolkittform with a collection of new components specifically designed to support processing steps typical of mobility data, including map-matching, trajectory partitioning, and road network coverage analysis. To show the effectiveness of these components, we report also on how we applied them to perform a
39#
發(fā)表于 2025-3-28 07:02:13 | 只看該作者
Bus Journey Time Prediction with?Machine Learning: An Empirical Experience in?Two Citiesons is strongly related to the standard deviation of the whole journey times. It emerges that some bus routes show consistency in the prediction error across methods, and for these routes it makes sense to use methods that are fast and computationally efficient, as there is no benefit to applying mo
40#
發(fā)表于 2025-3-28 13:31:05 | 只看該作者
Geosensor Network Optimisation to?Support Decisions at?Multiple Scalesmation loss within spatially nested decision scales. The methods described in this paper fill an important gap as they are i) suggest appropriate sample and geosensor network designs to support cross-scale monitoring, ii) inform on how current network or geosensor coverage could be enhanced by filli
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 19:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
聂荣县| 仁化县| 嘉义市| 临澧县| 修水县| 绥棱县| 喀喇沁旗| 项城市| 怀仁县| 邵武市| 伽师县| 兴隆县| 莆田市| 玉环县| 通渭县| 眉山市| 武夷山市| 柳林县| 阿勒泰市| 南岸区| 卓资县| 武汉市| 三河市| 东兰县| 行唐县| 平原县| 洛隆县| 开封市| 宜川县| 伊宁县| 饶河县| 梅州市| 托克逊县| 陆丰市| 普格县| 绩溪县| 龙陵县| 江城| 达尔| 读书| 迁安市|