找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Web and Big Data; Second International Yi Cai,Yoshiharu Ishikawa,Jianliang Xu Conference proceedings 2018 Springer Nature Switzerland AG 20

[復(fù)制鏈接]
樓主: 歸納
41#
發(fā)表于 2025-3-28 16:24:41 | 只看該作者
42#
發(fā)表于 2025-3-28 22:20:00 | 只看該作者
Multivariate Time Series Clustering via Multi-relational Community Detection in Networksthe ability of networks to characterize both local and global relationship amongst nodes (representing data samples), while the use of MNMF can give full play to complex relations amongst individual series and preserve the multi-way nature of multivariate information. Preliminary experiment indicates promising results of our proposed approach.
43#
發(fā)表于 2025-3-29 00:05:27 | 只看該作者
Multivariate Time Series Clustering via Multi-relational Community Detection in Networksthe ability of networks to characterize both local and global relationship amongst nodes (representing data samples), while the use of MNMF can give full play to complex relations amongst individual series and preserve the multi-way nature of multivariate information. Preliminary experiment indicates promising results of our proposed approach.
44#
發(fā)表于 2025-3-29 03:42:50 | 只看該作者
Attentive and Collaborative Deep Learning for Recommendationmodel, learning of latent factors of users and items can be facilitated by deep processing of items’ tag information. Furthermore, user preferences learned are interpretable. Experiments conducted on a real world dataset demonstrate that our model can significantly outperform the state-of-the-art deep collaborative filtering models.
45#
發(fā)表于 2025-3-29 10:08:01 | 只看該作者
Attentive and Collaborative Deep Learning for Recommendationmodel, learning of latent factors of users and items can be facilitated by deep processing of items’ tag information. Furthermore, user preferences learned are interpretable. Experiments conducted on a real world dataset demonstrate that our model can significantly outperform the state-of-the-art deep collaborative filtering models.
46#
發(fā)表于 2025-3-29 14:35:18 | 只看該作者
47#
發(fā)表于 2025-3-29 15:55:10 | 只看該作者
Sentiment Classification via Supplementary Information Modeling methods. Results show that our model can not only successfully capture the effect of negation and intensity words, but also achieve significant improvements over state-of-the-art deep neural network baselines without supplementary features.
48#
發(fā)表于 2025-3-29 20:13:40 | 只看該作者
49#
發(fā)表于 2025-3-30 02:03:03 | 只看該作者
Sentiment Classification via Supplementary Information Modeling methods. Results show that our model can not only successfully capture the effect of negation and intensity words, but also achieve significant improvements over state-of-the-art deep neural network baselines without supplementary features.
50#
發(fā)表于 2025-3-30 06:47:51 | 只看該作者
An Estimation Framework of Node Contribution Based on Diffusion Informationmportance of nodes in the spreading processes. Then, we propose an estimation framework and give the method to estimate node contribution based on diffusion samples. Accordingly, the Contribution Estimation algorithm is proposed upon the framework. Finally, we implement our algorithm and test the efficiency on two weighted social networks.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 01:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
那坡县| 蕉岭县| 宝清县| 铜鼓县| 辽中县| 庆阳市| 丽江市| 拉孜县| 石家庄市| 班戈县| 湖北省| 辛集市| 徐闻县| 双鸭山市| 昌平区| 万载县| 乐安县| 贺州市| 双柏县| 建昌县| 灵璧县| 竹山县| 桓台县| 南乐县| 重庆市| 正阳县| 长子县| 辽源市| 于都县| 安化县| 尉氏县| 永兴县| 莲花县| 西华县| 涟源市| 娄烦县| 通海县| 淳化县| 白河县| 革吉县| 保靖县|