找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Web and Big Data; 8th International Jo Wenjie Zhang,Anthony Tung,Hongjie Guo Conference proceedings 2024 The Editor(s) (if applicable) and

[復(fù)制鏈接]
樓主: 稀少
11#
發(fā)表于 2025-3-23 13:12:26 | 只看該作者
12#
發(fā)表于 2025-3-23 15:38:55 | 只看該作者
13#
發(fā)表于 2025-3-23 19:04:30 | 只看該作者
Logic Preference Fusion Reasoning on?Recommendationtract user preferences from interaction records, they frequently neglect the user’s logical requirements, which are embedded in the logical relations between items and entities. Existing methods that account for user’s logical requirements employ neural networks to mimic logical operators, failing t
14#
發(fā)表于 2025-3-24 00:11:24 | 只看該作者
Logic Preference Fusion Reasoning on?Recommendationtract user preferences from interaction records, they frequently neglect the user’s logical requirements, which are embedded in the logical relations between items and entities. Existing methods that account for user’s logical requirements employ neural networks to mimic logical operators, failing t
15#
發(fā)表于 2025-3-24 06:26:48 | 只看該作者
MHGNN: Hybrid Graph Neural Network with?Mixers for?Multi-interest Session-Aware Recommendationevements of existing methods, they still have drawbacks in some aspects. Firstly, most existing methods only consider transition relationships between items within the current user’s sessions, while neglecting the valuable item transition patterns from other users and the useful preferences from sim
16#
發(fā)表于 2025-3-24 07:39:12 | 只看該作者
MHGNN: Hybrid Graph Neural Network with?Mixers for?Multi-interest Session-Aware Recommendationevements of existing methods, they still have drawbacks in some aspects. Firstly, most existing methods only consider transition relationships between items within the current user’s sessions, while neglecting the valuable item transition patterns from other users and the useful preferences from sim
17#
發(fā)表于 2025-3-24 12:51:27 | 只看該作者
18#
發(fā)表于 2025-3-24 15:23:47 | 只看該作者
19#
發(fā)表于 2025-3-24 20:39:48 | 只看該作者
20#
發(fā)表于 2025-3-25 00:04:57 | 只看該作者
Noise-Resistant Graph Neural Networks for?Session-Based Recommendationclick of a user based on a short anonymous interaction sequence. Previous works have focused on users’ long-term and short-term preferences, ignoring the noise problem in session sequences. However, session data is inevitably noisy, as it may contain incorrect clicks that are inconsistent with the u
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 12:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沈阳市| 和顺县| 乌兰察布市| 株洲县| 江口县| 延安市| 浙江省| 乌拉特前旗| 嘉定区| 洛南县| 星子县| 六枝特区| 含山县| 巴南区| 合阳县| 宝兴县| 霍邱县| 恩平市| 民和| 淳化县| 大城县| 绥阳县| 丰镇市| 日照市| 纳雍县| 新津县| 乌恰县| 原平市| 闽侯县| 洛川县| 耒阳市| 宁城县| 绩溪县| 霍州市| 苏州市| 淄博市| 高平市| 淅川县| 凤阳县| 德令哈市| 宜阳县|