找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Web and Big Data; 8th International Jo Wenjie Zhang,Anthony Tung,Hongjie Guo Conference proceedings 2024 The Editor(s) (if applicable) and

[復(fù)制鏈接]
樓主: dejected
61#
發(fā)表于 2025-4-1 05:11:22 | 只看該作者
Similarity Retrieval and?Medical Cross-Modal Attention Based Medical Report Generationon Network (SRMCAN). By employing content-based similarity retrieval, SRMCAN filters out interfering information in relevant semantic features, which serves as?a complementary feature for the model. SRMCAN constructs a fine-grained alignment loss function, taking similar cases as hard negative sampl
62#
發(fā)表于 2025-4-1 08:21:28 | 只看該作者
LLM-Based Empathetic Response Through Psychologist-Agent Debater empathetic responses is the lack of integration of different schools of psychology and multiple rounds. To address this issue, we propose a psychologist-agent-based multi-turn dialogue framework. This framework comprises a group of arguers with preferences of different psychological schools, used
63#
發(fā)表于 2025-4-1 14:12:32 | 只看該作者
64#
發(fā)表于 2025-4-1 18:11:24 | 只看該作者
65#
發(fā)表于 2025-4-1 22:23:03 | 只看該作者
LLM-Based Empathetic Response Through Psychologist-Agent Debater empathetic responses is the lack of integration of different schools of psychology and multiple rounds. To address this issue, we propose a psychologist-agent-based multi-turn dialogue framework. This framework comprises a group of arguers with preferences of different psychological schools, used
66#
發(fā)表于 2025-4-2 02:41:50 | 只看該作者
67#
發(fā)表于 2025-4-2 04:54:49 | 只看該作者
Enhancing Continual Relation Extraction with?Concept Aware Dynamic Memory Optimizationappropriate training samples for replay training and the latter generates more accurate relation prototypes for the prediction. Our experimental results demonstrate the effectiveness of our method in mitigating biased feature representations to overcome catastrophic forgetting.
68#
發(fā)表于 2025-4-2 10:28:57 | 只看該作者
Enhancing Continual Relation Extraction with?Concept Aware Dynamic Memory Optimizationappropriate training samples for replay training and the latter generates more accurate relation prototypes for the prediction. Our experimental results demonstrate the effectiveness of our method in mitigating biased feature representations to overcome catastrophic forgetting.
69#
發(fā)表于 2025-4-2 11:20:38 | 只看該作者
Knowledge-Enhanced Context Representation for?Unbiased Scene Graph Generationco-occurrence frequencies of entities and relationships, the global semantic representation of the entire image, and visual features are combined as inputs to generate contextual semantic representations for relational triplets. Additionally, this model also demonstrates improvement in addressing th
70#
發(fā)表于 2025-4-2 15:52:39 | 只看該作者
Knowledge-Enhanced Context Representation for?Unbiased Scene Graph Generationco-occurrence frequencies of entities and relationships, the global semantic representation of the entire image, and visual features are combined as inputs to generate contextual semantic representations for relational triplets. Additionally, this model also demonstrates improvement in addressing th
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 12:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
嘉义县| 正镶白旗| 元谋县| 博湖县| 琼中| 渝北区| 石首市| 德令哈市| 陵水| 黑河市| 景泰县| 奉新县| 景谷| 上高县| 修武县| 巢湖市| 扬中市| 措美县| 葫芦岛市| 都兰县| 扶风县| 兰西县| 双流县| 吉木萨尔县| 罗田县| 岚皋县| 乌兰浩特市| 内黄县| 合江县| 南充市| 永嘉县| 汨罗市| 托里县| 宁海县| 手机| 昌黎县| 黑山县| 铜陵市| 德庆县| 剑川县| 堆龙德庆县|