找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Web and Big Data; First International Lei Chen,Christian S. Jensen,Xiang Lian Conference proceedings 2017 Springer International Publishin

[復(fù)制鏈接]
樓主: 生手
51#
發(fā)表于 2025-3-30 08:22:13 | 只看該作者
Boost Clickbait Detection Based on User Behavior Analysis a classifier to produce an initial clickbait-score for articles. Then, we define a loss function on the user behavior and tune the clickbait score toward decreasing the loss function. Experiment shows that we improve precision and recall after using user behavior.
52#
發(fā)表于 2025-3-30 13:55:49 | 只看該作者
Boost Clickbait Detection Based on User Behavior Analysis a classifier to produce an initial clickbait-score for articles. Then, we define a loss function on the user behavior and tune the clickbait score toward decreasing the loss function. Experiment shows that we improve precision and recall after using user behavior.
53#
發(fā)表于 2025-3-30 16:53:47 | 只看該作者
54#
發(fā)表于 2025-3-30 21:01:36 | 只看該作者
55#
發(fā)表于 2025-3-31 03:03:34 | 只看該作者
Improving Topic Diversity in Recommendation Lists: Marginally or Proportionally?modular function maximization and proportionality respectively. Experimental results on MovieLens and FilmTrust datasets demonstrate that our approach outperforms state-of-the-art techniques in terms of distributional diversity.
56#
發(fā)表于 2025-3-31 07:41:31 | 只看該作者
Improving Topic Diversity in Recommendation Lists: Marginally or Proportionally?modular function maximization and proportionality respectively. Experimental results on MovieLens and FilmTrust datasets demonstrate that our approach outperforms state-of-the-art techniques in terms of distributional diversity.
57#
發(fā)表于 2025-3-31 12:22:42 | 只看該作者
58#
發(fā)表于 2025-3-31 14:15:33 | 只看該作者
59#
發(fā)表于 2025-3-31 19:27:25 | 只看該作者
Event2vec: Learning Representations of Events on Temporal SequencesFinally, we feed these data to embedding neural network to get learned vectors. Experiments on real temporal event sequence data in medical area demonstrate the effectiveness and efficiency of the proposed method. The procedure is totally unsupervised without the help of expert knowledge. Thus can b
60#
發(fā)表于 2025-4-1 00:52:53 | 只看該作者
Event2vec: Learning Representations of Events on Temporal SequencesFinally, we feed these data to embedding neural network to get learned vectors. Experiments on real temporal event sequence data in medical area demonstrate the effectiveness and efficiency of the proposed method. The procedure is totally unsupervised without the help of expert knowledge. Thus can b
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 15:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
云浮市| 宿州市| 固原市| 明溪县| 南昌县| 阳山县| 陇南市| 开鲁县| 石狮市| 信阳市| 华阴市| 扶绥县| 新巴尔虎右旗| 长顺县| 卢氏县| 张家口市| 治多县| 青阳县| 台南县| 昌邑市| 青岛市| 陵水| 东至县| 远安县| 卓尼县| 安陆市| 清丰县| 潜江市| 华阴市| 蓬安县| 曲靖市| 丘北县| 陵水| 区。| 芒康县| 凤山市| 大足县| 吴忠市| 太白县| 平谷区| 南京市|