找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Web and Big Data; 7th International Jo Xiangyu Song,Ruyi Feng,Geyong Min Conference proceedings 2024 The Editor(s) (if applicable) and The

[復制鏈接]
樓主: 爆發(fā)
41#
發(fā)表于 2025-3-28 18:05:28 | 只看該作者
,An Investigation of?the?Effectiveness of?Template Protection Methods on?Protecting Privacy During I detection model. Eventually, during the spoof detection phase, protected templates are used as input, rather than the original iris images. Experiments conducted on CASIA-Syn and CASIA-Interval datasets demonstrate that the application of iris template protection techniques to the spoof detection m
42#
發(fā)表于 2025-3-28 22:12:46 | 只看該作者
,Stock Volatility Prediction Based on?Transformer Model Using Mixed-Frequency Data,s part of the training data. Our experiments show that this model outperforms the baselines in terms of mean square error. The adaption of both types of data under Transformer model significantly reduces the mean square error from 1.00 to 0.86.
43#
發(fā)表于 2025-3-29 01:46:45 | 只看該作者
,An Investigation of?the?Effectiveness of?Template Protection Methods on?Protecting Privacy During I detection model. Eventually, during the spoof detection phase, protected templates are used as input, rather than the original iris images. Experiments conducted on CASIA-Syn and CASIA-Interval datasets demonstrate that the application of iris template protection techniques to the spoof detection m
44#
發(fā)表于 2025-3-29 04:34:00 | 只看該作者
45#
發(fā)表于 2025-3-29 11:10:58 | 只看該作者
,Stock Volatility Prediction Based on?Transformer Model Using Mixed-Frequency Data,s part of the training data. Our experiments show that this model outperforms the baselines in terms of mean square error. The adaption of both types of data under Transformer model significantly reduces the mean square error from 1.00 to 0.86.
46#
發(fā)表于 2025-3-29 14:13:18 | 只看該作者
47#
發(fā)表于 2025-3-29 18:10:54 | 只看該作者
48#
發(fā)表于 2025-3-29 22:04:43 | 只看該作者
49#
發(fā)表于 2025-3-30 03:13:57 | 只看該作者
,A Multi-teacher Knowledge Distillation Framework for?Distantly Supervised Relation Extraction with?rature regulation (FTR) to adjust the temperature assigned to each training instance, so as to dynamically capture local relations between instances. Furthermore, we introduce information entropy of hidden layers to gain stable temperature calculations. Finally, we propose multi-view knowledge disti
50#
發(fā)表于 2025-3-30 04:16:42 | 只看該作者
,PAEE: Parameter-Efficient and?Data-Effective Image Captioning Model with?Knowledge Prompter and?Croed models and similar approaches, while reducing the number of trainable parameters. We design two new datasets to explore the data utilization ability of PAEE and discover that it can effectively use new data and achieve domain transfer without any training or fine-tuning. Additionally, we introduc
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 04:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
怀仁县| 焦作市| 莆田市| 黄山市| 大田县| 五华县| 泸定县| 上林县| 凯里市| 郸城县| 明星| 商河县| 营口市| 出国| 香格里拉县| 万山特区| 宜宾市| 达日县| 蕲春县| 成武县| 日土县| 正蓝旗| 疏附县| 柘城县| 星座| 大石桥市| 陇南市| 广宁县| 平和县| 涿鹿县| 同江市| 乐昌市| 元谋县| 公主岭市| 霍山县| 德格县| 太仆寺旗| 桃江县| 鲁山县| 叙永县| 远安县|