找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Web Information Systems and Mining; International Confer Zhiguo Gong,Xiangfeng Luo,Fu Lee Wang Conference proceedings 2011 Springer-Verlag

[復(fù)制鏈接]
樓主: obsess
41#
發(fā)表于 2025-3-28 17:43:57 | 只看該作者
42#
發(fā)表于 2025-3-28 22:03:18 | 只看該作者
Redundant Feature Elimination by Using Approximate Markov Blanket Based on Discriminative Contributiperformance of classifiers. There are previous works to handle this problem by using pair-wise feature similarities, which do not consider discriminative contribution of each feature by utilizing the label information. Here we define an Approximate Markov Blanket (AMB) based on the metric of DIScrim
43#
發(fā)表于 2025-3-28 23:34:38 | 只看該作者
Redundant Feature Elimination by Using Approximate Markov Blanket Based on Discriminative Contributiperformance of classifiers. There are previous works to handle this problem by using pair-wise feature similarities, which do not consider discriminative contribution of each feature by utilizing the label information. Here we define an Approximate Markov Blanket (AMB) based on the metric of DIScrim
44#
發(fā)表于 2025-3-29 06:44:53 | 只看該作者
45#
發(fā)表于 2025-3-29 10:39:43 | 只看該作者
46#
發(fā)表于 2025-3-29 14:31:32 | 只看該作者
Text Clustering Based on LSA-HGSOMr space model (VSM) of term weight by using the theory of LSA, then semantic relation is included in the vector space model. Both theory analysis and experimental results confirm that LSA-HGSOM method decreases the number of vector, and enhances the efficiency and precision of text clustering.
47#
發(fā)表于 2025-3-29 15:40:25 | 只看該作者
Text Clustering Based on LSA-HGSOMr space model (VSM) of term weight by using the theory of LSA, then semantic relation is included in the vector space model. Both theory analysis and experimental results confirm that LSA-HGSOM method decreases the number of vector, and enhances the efficiency and precision of text clustering.
48#
發(fā)表于 2025-3-29 23:37:57 | 只看該作者
An Indent Shape Based Approach for Web Lists Mining the documents can be recognized, from which the lists of the target Web page can be extracted. Extensive experiments show that our approach achieves better performance and efficiency compared with existing approaches.
49#
發(fā)表于 2025-3-30 00:36:46 | 只看該作者
An Indent Shape Based Approach for Web Lists Mining the documents can be recognized, from which the lists of the target Web page can be extracted. Extensive experiments show that our approach achieves better performance and efficiency compared with existing approaches.
50#
發(fā)表于 2025-3-30 04:12:21 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 22:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
嘉鱼县| 孝昌县| 绵阳市| 斗六市| 巧家县| 青州市| 宜黄县| 鹿邑县| 九龙坡区| 湖北省| 鲁山县| 博爱县| 滕州市| 阿勒泰市| 兴安盟| 内江市| 罗山县| 曲周县| 北流市| 兰坪| 昌邑市| 江北区| 斗六市| 阿荣旗| 揭阳市| 唐山市| 应城市| 灵台县| 秦皇岛市| 盐亭县| 施秉县| 长白| 交城县| 宜都市| 尼木县| 邢台县| 东辽县| 宜阳县| 邻水| 富平县| 长白|