找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Web Information Systems and Applications; 21st International C Cheqing Jin,Shiyu Yang,Yong Zhang Conference proceedings 2024 The Editor(s)

[復(fù)制鏈接]
樓主: crusade
51#
發(fā)表于 2025-3-30 09:28:37 | 只看該作者
Hua Yin,Shuo Huang,ZhiJian Wang,Yong Ye,WenHui Zhu
52#
發(fā)表于 2025-3-30 13:50:17 | 只看該作者
Yilin Chen,Tianxing Wu,Yunchang Liu,Yuxiang Wang,Guilin Qi
53#
發(fā)表于 2025-3-30 17:59:19 | 只看該作者
54#
發(fā)表于 2025-3-30 21:59:50 | 只看該作者
55#
發(fā)表于 2025-3-31 02:28:30 | 只看該作者
Iterative Transfer Knowledge Distillation and?Channel Pruning for?Unsupervised Cross-Domain Compress, redundant channels in the student model are pruned to reduce the computational cost while retaining the model accuracy. In particular, the alternation of ACP and TKD ensures effective knowledge transfer, balancing the model size and its performance in the target domain. Experimental results demons
56#
發(fā)表于 2025-3-31 07:16:08 | 只看該作者
Iterative Transfer Knowledge Distillation and?Channel Pruning for?Unsupervised Cross-Domain Compress, redundant channels in the student model are pruned to reduce the computational cost while retaining the model accuracy. In particular, the alternation of ACP and TKD ensures effective knowledge transfer, balancing the model size and its performance in the target domain. Experimental results demons
57#
發(fā)表于 2025-3-31 13:03:28 | 只看該作者
58#
發(fā)表于 2025-3-31 14:48:13 | 只看該作者
Aspect-Based Sentiment Classification Model Based on Multi-view Information Fusionom different perspectives has not been studied. To solve the above problems, an aspect-based sentiment classification model based on multi-view information fusion is proposed. By constructing an inference result set from the large language model (LLM), the LLM’s results are used to enhance the model
59#
發(fā)表于 2025-3-31 19:00:57 | 只看該作者
60#
發(fā)表于 2025-3-31 23:49:14 | 只看該作者
GTGNN: Global Graph and?Taxonomy Tree for?Graph Neural Network Session-Based Recommendationnomy tree to learn user intent from the perspective of attention mechanism and historical distribution data respectively, simulating the decision-making process when interacting with new items. Meanwhile, to solve the problem that GNN cannot learn new items, zero-shot learning is introduced to infer
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 09:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
思茅市| 桑日县| 卢龙县| 乐平市| 清苑县| 台州市| 宁河县| 莱芜市| 建昌县| 闻喜县| 收藏| 西畴县| 肃宁县| 汶上县| 青铜峡市| 江门市| 安义县| 宝兴县| 达尔| 盘山县| 新巴尔虎右旗| 叶城县| 曲靖市| 揭西县| 抚州市| 遵化市| 裕民县| 苏尼特右旗| 历史| 南开区| 宜昌市| 汾西县| 保康县| 商都县| 丁青县| 防城港市| 水城县| 土默特左旗| 江源县| 万山特区| 修武县|