找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Web Information Systems Engineering -- WISE 2013; 14th International C Xuemin Lin,Yannis Manolopoulos,Guangyan Huang Conference proceedings

[復(fù)制鏈接]
樓主: ARGOT
31#
發(fā)表于 2025-3-26 21:23:21 | 只看該作者
32#
發(fā)表于 2025-3-27 04:54:16 | 只看該作者
33#
發(fā)表于 2025-3-27 08:40:29 | 只看該作者
Exploiting User Queries for Search Result Clustering the user, the different cluster should contain the results corresponding to different possible meanings of the user query and the cluster labels should reflect these meanings. However, existing SRC algorithms often ignore the user query and group the results based just on the similarity of search r
34#
發(fā)表于 2025-3-27 12:09:24 | 只看該作者
Exploiting User Queries for Search Result Clustering the user, the different cluster should contain the results corresponding to different possible meanings of the user query and the cluster labels should reflect these meanings. However, existing SRC algorithms often ignore the user query and group the results based just on the similarity of search r
35#
發(fā)表于 2025-3-27 14:56:53 | 只看該作者
36#
發(fā)表于 2025-3-27 21:34:02 | 只看該作者
Towards Context-Aware Social Recommendation via Trust Networkstion models cannot well handle the heterogeneity and diversity of the social relationships (e.g., different friends may have different recommendations on the same items in different situations). Furthermore, few models take into account (non-social) contextual information, which has been proved to b
37#
發(fā)表于 2025-3-28 01:07:31 | 只看該作者
Personalized Recommendation on Multi-Layer Context Graphecommender systems, but most existing approaches only focus on user and item dimensions and neglect any additional contextual information, such as time and location. In this paper, we propose a Multi-Layer Context Graph (MLCG) model which incorporates a variety of contextual information into a recom
38#
發(fā)表于 2025-3-28 02:17:14 | 只看該作者
39#
發(fā)表于 2025-3-28 08:23:08 | 只看該作者
Recommending Tripleset Interlinking through a Social Network Approachipleset is a non-trivial task in the publishing process. Without prior knowledge about the entire Web of Data, a data publisher must perform an exploratory search, which demands substantial effort and may become impracticable, with the growth and dissemination of Linked Data. Aiming at alleviating t
40#
發(fā)表于 2025-3-28 12:46:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 17:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宕昌县| 永川市| 田阳县| 汽车| 蒙自县| 同仁县| 沁源县| 化州市| 灯塔市| 闽侯县| 元阳县| 新建县| 大庆市| 新营市| 湘乡市| 汉沽区| 彝良县| 滦南县| 正安县| 奈曼旗| 大渡口区| 赤城县| 泸定县| 海安县| 溧水县| 金昌市| 木兰县| 广汉市| 银川市| 珲春市| 都江堰市| 颍上县| 越西县| 仁怀市| 清水县| 惠安县| 罗源县| 嘉荫县| 宁武县| 文登市| 卢氏县|