找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Waves in Flows; The 2018 Prague-Sum Tomá? Bodnár,Giovanni P. Galdi,?árka Ne?asová Book 2021 Springer Nature Switzerland AG 2021 Waves in f

[復(fù)制鏈接]
樓主: Curator
31#
發(fā)表于 2025-3-26 21:04:15 | 只看該作者
32#
發(fā)表于 2025-3-27 03:02:02 | 只看該作者
33#
發(fā)表于 2025-3-27 05:40:13 | 只看該作者
Semigroup Theory for the Stokes Operator with Navier Boundary Condition on , Spaces,al semigroup theory in ..-spaces related to the Stokes operator with Navier boundary condition where the slip coefficient . is a non-smooth scalar function. It is shown that the strong and weak Stokes operators with Navier conditions admit analytic semigroup with bounded pure imaginary powers. We al
34#
發(fā)表于 2025-3-27 10:15:15 | 只看該作者
Remarks on the Energy Equality for the 3D Navier-Stokes Equations,ated with the 3D Navier-Stokes equations with Dirichlet boundary conditions. While the energy equality is satisfied for strong solutions, the dissipation phenomenon is expected to be connected with the roughness of the solutions. A natural question is, then, which regularity is needed for a weak sol
35#
發(fā)表于 2025-3-27 15:25:17 | 只看該作者
36#
發(fā)表于 2025-3-27 19:14:09 | 只看該作者
37#
發(fā)表于 2025-3-27 22:17:39 | 只看該作者
38#
發(fā)表于 2025-3-28 02:59:10 | 只看該作者
39#
發(fā)表于 2025-3-28 08:42:47 | 只看該作者
,Compressible Navier-Stokes System on a Moving Domain in the ,???, Framework,vector field ., in a maximal ..???.. regularity framework. Under additional smallness assumptions on the data we show that our solution exists globally in time and satisfies a decay estimate. In particular, for the global well-posedness we do not require exponential decay or smallness of . in ..(..)
40#
發(fā)表于 2025-3-28 13:34:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 08:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
西昌市| 南昌市| 恭城| 太和县| 华安县| 肃北| 通河县| 苍溪县| 米泉市| 西乌珠穆沁旗| 五家渠市| 馆陶县| 伊吾县| 万全县| 隆化县| 平陆县| 合作市| 潢川县| 抚宁县| 亳州市| 闽清县| 南溪县| 福安市| 孟州市| 东方市| 平湖市| 博野县| 留坝县| 义马市| 海淀区| 浮山县| 台中县| 上蔡县| 沭阳县| 棋牌| 潼南县| 汉川市| 隆化县| 托里县| 河北区| 孟连|