找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Wavelets and Their Applications; J. S. Byrnes,Jennifer L. Byrnes,Karl Berry Book 1994 Springer Science+Business Media Dordrecht 1994 Fouri

[復(fù)制鏈接]
樓主: 加冕
21#
發(fā)表于 2025-3-25 04:26:47 | 只看該作者
22#
發(fā)表于 2025-3-25 09:02:56 | 只看該作者
Convergence: Fourier series vs. wavelet expansions,ications have been made. Several interesting facts about wavelets can be found by examining convergence properties for wavelet expansions, and comparing them with similar properties for Fourier series.
23#
發(fā)表于 2025-3-25 11:53:18 | 只看該作者
24#
發(fā)表于 2025-3-25 16:58:45 | 只看該作者
25#
發(fā)表于 2025-3-25 23:30:28 | 只看該作者
Approximate frames and the narrowband multitarget radar problem,mputed. Under narrowband assumptions, and in general for real applications, it is necessary for the window signal to have finite first and second time and frequency moments, but Balian’s theorem shows that, in this case, the windowed basis is never a frame. This paper describes an approximation meth
26#
發(fā)表于 2025-3-26 03:38:51 | 只看該作者
27#
發(fā)表于 2025-3-26 06:30:08 | 只看該作者
28#
發(fā)表于 2025-3-26 09:01:28 | 只看該作者
29#
發(fā)表于 2025-3-26 13:57:31 | 只看該作者
Multiscale statistical modeling: isotropic processes on a homogeneous tree,mple, we encounter such an operator if we compute the projection of a function f ∈ L.(?) on a subspace V., and issue to a multiresolution analysis from the projection on the next finer subspace V.. The processing of “timeindexed” signals leads us to coefficients indexed by the nodes of a dyadic tree
30#
發(fā)表于 2025-3-26 18:51:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 05:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
靖州| 大埔区| 保山市| 民县| 紫金县| 将乐县| 武山县| 皋兰县| 大同县| 商丘市| 锦州市| 云霄县| 峨边| 精河县| 博罗县| 大名县| 靖边县| 杨浦区| 昌黎县| 天全县| 山阳县| 泰来县| 冕宁县| 望奎县| 灌阳县| 大港区| 潍坊市| 毕节市| 镇沅| 阜阳市| 罗平县| 邳州市| 隆子县| 斗六市| 淳安县| 黎平县| 壶关县| 沅陵县| 贵阳市| 醴陵市| 建水县|