找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Wavelets and Statistics; Anestis Antoniadis,Georges Oppenheim Book 1995 Springer-Verlag New York 1995 Gaussian process.Hypothese.Markov ra

[復(fù)制鏈接]
51#
發(fā)表于 2025-3-30 09:25:12 | 只看該作者
52#
發(fā)表于 2025-3-30 16:20:19 | 只看該作者
53#
發(fā)表于 2025-3-30 17:39:14 | 只看該作者
Translation-Invariant De-Noising,r example, Gibbs phenomena in the neighborhood of discontinuities—to the lack of translation invariance of the wavelet basis. One method to suppress such artifacts, termed “cycle spinning” by Coifman, is to “average out” the translation dependence. For a range of shifts, one shifts the data (right o
54#
發(fā)表于 2025-3-30 22:20:54 | 只看該作者
Estimating Wavelet Coefficients,studied for three types of observation design: the regular design, when the observations.(x.) are taken on the regular grid . the case of jittered regular grid, when it is only known that for all . the random design case: .are independent and identically distributed random variables on [0,1]. We sho
55#
發(fā)表于 2025-3-31 02:17:57 | 只看該作者
56#
發(fā)表于 2025-3-31 05:11:04 | 只看該作者
Nonparametric Supervised Image Segmentation by Energy Minimization using Wavelets,jected onto a wavelet basis. We assume a white noise model on the observed image. The aim of this paper is to study the asymptotic behavior of non-parametric estimators of the boundary when the number of pixels grows to infinity.
57#
發(fā)表于 2025-3-31 11:03:27 | 只看該作者
Nonparametric Supervised Image Segmentation by Energy Minimization using Wavelets,jected onto a wavelet basis. We assume a white noise model on the observed image. The aim of this paper is to study the asymptotic behavior of non-parametric estimators of the boundary when the number of pixels grows to infinity.
58#
發(fā)表于 2025-3-31 16:33:12 | 只看該作者
59#
發(fā)表于 2025-3-31 19:19:51 | 只看該作者
On the Statistics of Best Bases Criteria,e criteria for best bases representation are random variables. The search may thus be very sensitive to noise. In this paper, we characterize the asymptotic statistics of the criteria to gain insight which can in turn, be used to improve on the performance of the analysis. By way of a well-known inf
60#
發(fā)表于 2025-4-1 01:19:26 | 只看該作者
Discretized Wavelet Density Estimators for Continuous Time Stochastic Processes,ch are satisfied for rather general diffusion processes, the. . error of the linear wavelet estimator of. constructed from the observation . converges with the rate . when . In this work we study two discretized versions of this estimator, constructed from the dicrete observations . We show that the
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 19:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
和静县| 体育| 凤城市| 万载县| 钟山县| 和顺县| 涟水县| 蒲城县| 遂宁市| 如皋市| 兴海县| 昆山市| 八宿县| 吉林省| 新邵县| 石泉县| 常山县| 汶川县| 阜平县| 来凤县| 芮城县| 绍兴县| 田阳县| 乐东| 吉水县| 贞丰县| 玉田县| 顺昌县| 镇远县| 万州区| 宁夏| 德化县| 勐海县| 达孜县| 澄迈县| 栾城县| 南昌市| 巩义市| 武隆县| 三明市| 永城市|