找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Wavelets and Statistics; Anestis Antoniadis,Georges Oppenheim Book 1995 Springer-Verlag New York 1995 Gaussian process.Hypothese.Markov ra

[復(fù)制鏈接]
41#
發(fā)表于 2025-3-28 15:25:18 | 只看該作者
42#
發(fā)表于 2025-3-28 22:27:56 | 只看該作者
43#
發(fā)表于 2025-3-29 01:29:35 | 只看該作者
Locally Self Similar Gaussian Processes,of medical images. In this lecture, we first describe the class of Self Similar Gaussian Processes (SSGP) and give (in one dimension) a multiresolution analysis of the Fractional Brownian Motion of index.(.). We then enlarge the SSGP setting to the elliptic gaussian processes setting.
44#
發(fā)表于 2025-3-29 06:13:33 | 只看該作者
WaveLab and Reproducible Research,sions are provided for Macintosh, UNIX and Windows machines... makes available, in one package, all the code to reproduce all the figures in our published wavelet articles. The interested reader can inspect the source code to see exactly what algorithms were used, how parameters were set in producin
45#
發(fā)表于 2025-3-29 09:43:53 | 只看該作者
46#
發(fā)表于 2025-3-29 14:39:06 | 只看該作者
47#
發(fā)表于 2025-3-29 17:00:49 | 只看該作者
Extrema Reconstructions and Spline Smoothing: Variations on an Algorithm of Mallat & Zhong, These authors construct an approximation of the wavelet transform of the signal via an alternate projection iteration procedure and they obtain an approximation of the original signal by inverting the approximate wavelet transform. We explain how to solve the same problem by directly constructing t
48#
發(fā)表于 2025-3-29 22:03:07 | 只看該作者
Identification of Chirps with Continuous Wavelet Transform,resentations such as wavelet representations are well adapted to the characterization problem of such chirps. Ridges in the modulus of the transform determine regions in the transform domain with a high concentration of energy, and are regarded as natural candidates for the characterization and the
49#
發(fā)表于 2025-3-30 02:14:22 | 只看該作者
50#
發(fā)表于 2025-3-30 07:32:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 00:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
尉犁县| 绥阳县| 云林县| 江津市| 邛崃市| 夏邑县| 高安市| 五河县| 北票市| 祁连县| 淮安市| 都兰县| 彩票| 永登县| 同心县| 浦北县| 通榆县| 新邵县| 新营市| 阜阳市| 丰都县| 玉树县| 忻州市| 金湖县| 莆田市| 黄梅县| 米脂县| 称多县| 玛多县| 霍城县| 香港 | 安龙县| 高淳县| 湖口县| 灵川县| 兴安县| 龙川县| 遂溪县| 孝感市| 濮阳县| 上饶市|