找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Wavelet Transforms and Their Applications; Lokenath Debnath,Firdous Ahmad Shah Textbook 2015Latest edition Springer Science+Business Media

[復(fù)制鏈接]
樓主: obdurate
21#
發(fā)表于 2025-3-25 07:19:49 | 只看該作者
Includes carefully chosen end-of-chapter exercises directly associated with applications or formulated in terms of the mathematical, physical, and engineering context and provides answers to selected exercises 978-0-8176-8418-1
22#
發(fā)表于 2025-3-25 10:54:31 | 只看該作者
http://image.papertrans.cn/w/image/1021265.jpg
23#
發(fā)表于 2025-3-25 12:38:55 | 只看該作者
https://doi.org/10.1007/978-0-8176-8418-1Fourier Transforms; Harmonic Wavelets; Multiresolution Analysis; Time-Frequency Analsysis; Wavelets
24#
發(fā)表于 2025-3-25 18:47:30 | 只看該作者
Springer Science+Business Media New York 2015
25#
發(fā)表于 2025-3-25 20:25:52 | 只看該作者
26#
發(fā)表于 2025-3-26 01:16:11 | 只看該作者
The Wavelet Transforms and Their Basic Properties,ain difficulties of the Gabor wavelets in the sense that the Gabor analyzing function ..(τ)?=?.(τ ? .)?.. oscillates more rapidly as the frequency ω tends to infinity. This leads to significant numerical instability in the computation of the coefficients 〈.,?..〉.
27#
發(fā)表于 2025-3-26 06:45:17 | 只看該作者
Wavelet Transform Analysis of Turbulence, computation. More and more evidence has been accumulated for the physical description of turbulent motions in both two and three dimensions. Consequently, turbulence is now characterized by a remarkable degree of order even though turbulence is usually defined as disordered fluid flows.
28#
發(fā)表于 2025-3-26 11:36:37 | 只看該作者
Wavelet Transform Analysis of Turbulence, computation. More and more evidence has been accumulated for the physical description of turbulent motions in both two and three dimensions. Consequently, turbulence is now characterized by a remarkable degree of order even though turbulence is usually defined as disordered fluid flows.
29#
發(fā)表于 2025-3-26 16:24:37 | 只看該作者
Brief Historical Introduction,Historically, Joseph Fourier (1770–1830) first introduced the remarkable idea of expansion of a function in terms of trigonometric series without giving any attention to rigorous mathematical analysis.
30#
發(fā)表于 2025-3-26 18:17:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 23:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
丽江市| 民丰县| 津市市| 义马市| 临武县| 堆龙德庆县| 元江| 肇庆市| 延津县| 正镶白旗| 绍兴市| 大邑县| 保定市| 浦东新区| 高雄县| 沁水县| 文水县| 宜川县| 炉霍县| 信宜市| 城固县| 荣昌县| 射洪县| 芜湖市| 镇远县| 阳朔县| 仁怀市| 乌海市| 景泰县| 新丰县| 古田县| 平谷区| 商水县| 田东县| 马鞍山市| 芦山县| 汝城县| 工布江达县| 鄂托克旗| 广州市| 贺兰县|