找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Waveform Analysis of Sound; Mikio Tohyama Book 2015 Springer Japan 2015 Auditory Sensation.Auditory Sound.Clustered Line Spectrum Modeling

[復(fù)制鏈接]
樓主: quick-relievers
11#
發(fā)表于 2025-3-23 11:32:29 | 只看該作者
12#
發(fā)表于 2025-3-23 14:18:18 | 只看該作者
13#
發(fā)表于 2025-3-23 19:46:45 | 只看該作者
14#
發(fā)表于 2025-3-23 23:10:38 | 只看該作者
Temporal and Spectral Characteristics of Discrete Sequence,pic structures, whereas the frame-wise spectral properties can be interpreted as related to the time-dependent fine structure of a sequence. The local behavior of phase spectral records or group delay is crucial in the construction of the envelopes. Inspired by the methods used for group delay, tria
15#
發(fā)表于 2025-3-24 03:50:48 | 只看該作者
16#
發(fā)表于 2025-3-24 07:13:20 | 只看該作者
Modulation and Periodic Properties of Temporal Envelope,ulates the modulation index, which characterizes the spectral magnitudes of the envelope frequencies normalized. Speech intelligibility is estimated by the modulation index of the narrow-band envelopes. An intriguing question is whether the magnitude or phase spectrum is dominant in synthesizing int
17#
發(fā)表于 2025-3-24 13:22:00 | 只看該作者
18#
發(fā)表于 2025-3-24 18:42:04 | 只看該作者
Sampling Theorem and Discrete Fourier Transform,press a periodic sequence using sampled spectral sequences in accordance with the sampling theorem and discrete Fourier transformation. The pair of time and spectral sequences forms a discrete Fourier transform (DFT) pair. The sampling theorem gives conditions and formulation for sampling a continuo
19#
發(fā)表于 2025-3-24 20:39:35 | 只看該作者
Sinusoidal Representation of Sequence,dal sequences. A compound sinusoidal sequence can be identified by repeating spectral peak selection from the interpolated spectral sequence iteratively independent of the observation length, provided the sinusoidal components are time independent. The frame-wise approach of spectral peak selection
20#
發(fā)表于 2025-3-25 00:54:57 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 06:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
旌德县| 德昌县| 烟台市| 开原市| 精河县| 乌拉特中旗| 祁连县| 宣武区| 海阳市| 凤城市| 陈巴尔虎旗| 乌拉特前旗| 白河县| 获嘉县| 秦安县| 太康县| 那坡县| 嵊州市| 监利县| 如东县| 准格尔旗| 陇川县| 青岛市| 乐东| 宁波市| 肃南| 光泽县| 定西市| 顺平县| 周口市| 华阴市| 邮箱| 托里县| 高邮市| 凤阳县| 永和县| 密山市| 黎川县| 兴安县| 松潘县| 阳江市|