找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Water Waves and Ship Hydrodynamics; An Introduction A.J. Hermans Book 2011Latest edition Springer Science+Business Media B.V. 2011 dredging

[復制鏈接]
樓主: Extraneous
11#
發(fā)表于 2025-3-23 12:59:47 | 只看該作者
Boundary Integral Formulation and Ship Motions,armonic in time there are different ways to formulate an integral equation. A popular formulation, described in this chapter, is the one in the frequency domain. A less frequently used approach is a formulation in the time domain. The advantage of the latter approach is that the source function is r
12#
發(fā)表于 2025-3-23 14:28:05 | 只看該作者
Boundary Integral Formulation and Ship Motions,armonic in time there are different ways to formulate an integral equation. A popular formulation, described in this chapter, is the one in the frequency domain. A less frequently used approach is a formulation in the time domain. The advantage of the latter approach is that the source function is r
13#
發(fā)表于 2025-3-23 18:45:18 | 只看該作者
14#
發(fā)表于 2025-3-23 23:16:43 | 只看該作者
15#
發(fā)表于 2025-3-24 04:22:30 | 只看該作者
16#
發(fā)表于 2025-3-24 09:48:12 | 只看該作者
17#
發(fā)表于 2025-3-24 13:25:33 | 只看該作者
18#
發(fā)表于 2025-3-24 17:35:09 | 只看該作者
19#
發(fā)表于 2025-3-24 20:11:07 | 只看該作者
Irregular and Non-linear Waves,ace and time. Section?. contains a brief description of the Wiener spectrum in connection with the generalised Fourier representations for the surface waves (S. Bochner, Vorlesungen über Fouriersche Integrale, Chelsea, . and N. Wiener, The Fourier Integral and certain of Its Applications, Dover, .).
20#
發(fā)表于 2025-3-25 00:08:28 | 只看該作者
Irregular and Non-linear Waves,ace and time. Section?. contains a brief description of the Wiener spectrum in connection with the generalised Fourier representations for the surface waves (S. Bochner, Vorlesungen über Fouriersche Integrale, Chelsea, . and N. Wiener, The Fourier Integral and certain of Its Applications, Dover, .).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 11:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
伊通| 永川市| 丰台区| 安吉县| 宁晋县| 嘉黎县| 桂平市| 嘉荫县| 吴旗县| 高台县| 乐陵市| 德令哈市| 惠水县| 奉化市| 收藏| 仙居县| 隆昌县| 图片| 巨鹿县| 炎陵县| 抚顺县| 罗定市| 凉城县| 赣州市| 集贤县| 辉县市| 边坝县| 新源县| 旌德县| 永州市| 边坝县| 凤庆县| 兰考县| 眉山市| 定安县| 新津县| 历史| 民乐县| 庆阳市| 若羌县| 肃宁县|