找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Was k?nnen wir wissen?; Mit Physik bis zur G Josef Honerkamp Book 2013 Springer-Verlag GmbH Berlin Heidelberg 2013 Evolution.Kritik.Neurowi

[復(fù)制鏈接]
樓主: Glycemic-Index
11#
發(fā)表于 2025-3-23 13:39:32 | 只看該作者
12#
發(fā)表于 2025-3-23 17:24:51 | 只看該作者
Josef Honerkampetermined and classified. Some conclusions are drawn concerning the properties of the corresponding covariant equations of motion and a group theoretical definition of an elementary particle in interaction with such a field is proposed (The special case of zero field reduces of course to the known r
13#
發(fā)表于 2025-3-23 19:50:34 | 只看該作者
Josef Honerkampons . and . to be eigenfunctions for the unperturbed Hamiltonian, which are basis functions for irreducible representations of the group of Schr?dinger’s equation. Here . transforms according to an irreducible representation of the group of Schr?dinger’s equation. This product involves the direct pr
14#
發(fā)表于 2025-3-23 23:08:57 | 只看該作者
Josef Honerkamprepresentations. The results are applied to chemical reaction theory, and to the theory of the Jahn–Teller effect. Selection rules are illustrated for linear and circular dichroism. Finally, the polyhedral Euler theorem is introduced and applied to valence-bond theory for clusters.
15#
發(fā)表于 2025-3-24 03:15:03 | 只看該作者
Josef Honerkamprepresentations. The results are applied to chemical reaction theory, and to the theory of?the Jahn–Teller effect. Selection rules?are illustrated for linear and circular dichroism. Finally, the polyhedral Euler theorem?is introduced and applied to valence-bond theory for clusters.
16#
發(fā)表于 2025-3-24 09:48:47 | 只看該作者
17#
發(fā)表于 2025-3-24 14:24:51 | 只看該作者
Josef Honerkampons in the Hilbert space of quantum mechanics. The second reason for dealing with these transformations is the fact that certain operators encountered in quantum mechanics may be interpreted as representatives of underlying geometric transformations in classical phase space. This applies in particul
18#
發(fā)表于 2025-3-24 18:34:57 | 只看該作者
19#
發(fā)表于 2025-3-24 21:20:43 | 只看該作者
20#
發(fā)表于 2025-3-25 01:03:18 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 19:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鹤壁市| 贺兰县| 临猗县| 沧源| 绍兴县| 定襄县| 台东县| 永寿县| 遵义市| 濉溪县| 澄城县| 四子王旗| 大冶市| 黄山市| 博爱县| 同仁县| 上栗县| 凯里市| 辽阳县| 昭平县| 洱源县| 诏安县| 蕉岭县| 保山市| 交口县| 吉水县| 昌邑市| 五峰| 海淀区| 德州市| 桂阳县| 会理县| 赤城县| 遂昌县| 青岛市| 武宁县| 怀远县| 化隆| 本溪| 田林县| 铅山县|