找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Walsh Series and Transforms; Theory and Applicati B. Golubov,A. Efimov,V. Skvortsov Book 1991 Springer Science+Business Media Dordrecht 199

[復制鏈接]
樓主: FETUS
41#
發(fā)表于 2025-3-28 15:45:32 | 只看該作者
42#
發(fā)表于 2025-3-28 22:24:08 | 只看該作者
43#
發(fā)表于 2025-3-29 01:05:45 | 只看該作者
Operators in the Theory of Walsh-Fourier Series,In this chapter, and the next, we shall obtain several results about Walsh-Fourier series by using properties of operators which take one space of measurable functions to another. We begin with definitions and some simple properties of the class of operators we wish to use.
44#
發(fā)表于 2025-3-29 06:34:53 | 只看該作者
Operators in the Theory of Walsh-Fourier Series,In this chapter, and the next, we shall obtain several results about Walsh-Fourier series by using properties of operators which take one space of measurable functions to another. We begin with definitions and some simple properties of the class of operators we wish to use.
45#
發(fā)表于 2025-3-29 08:06:46 | 只看該作者
46#
發(fā)表于 2025-3-29 13:30:39 | 只看該作者
Generalized Multiplicative Transforms,Let 1 ≤ . < ∞. A complex valued function .(.) is said to belong to .(0, ∞) if ∫.|.(.)|. > ∞. The norm of .(.) in the space .(0, ∞) will be denoted by ∥.∥. and is defined by
47#
發(fā)表于 2025-3-29 16:21:48 | 只看該作者
48#
發(fā)表于 2025-3-29 22:36:16 | 只看該作者
49#
發(fā)表于 2025-3-30 02:43:08 | 只看該作者
50#
發(fā)表于 2025-3-30 04:57:21 | 只看該作者
Lacunary Subsystems of the Walsh System,The Rademacher system, {.(.)} = {., . = 0,1,…, which was used to define the Walsh system (see §1.1), is a typical example of what is called a . of the Walsh system. We shall study these systems in the next several sections.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-8 02:47
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
历史| 兴和县| 左权县| 博兴县| 肇源县| 泸州市| 江北区| 民和| 邹平县| 怀宁县| 双鸭山市| 威海市| 南城县| 黎平县| 扶绥县| 铜川市| 涟源市| 邵武市| 门头沟区| 彩票| 富源县| 富裕县| 敦煌市| 宾阳县| 交口县| 资阳市| 农安县| 儋州市| 西贡区| 萍乡市| 浦北县| 永善县| 同心县| 绵竹市| 宁强县| 高雄县| 南昌县| 宁乡县| 湟中县| 溧水县| 新干县|