找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: WALCOM: Algorithms and Computation; 4th International Wo Md. Saidur Rahman,Satoshi Fujita Conference proceedings 2010 Springer-Verlag Berli

[復(fù)制鏈接]
樓主: 難免
21#
發(fā)表于 2025-3-25 05:59:56 | 只看該作者
A Global ,-Level Crossing Reduction Algorithmossing minimizations, which are still .-hard..We introduce a global crossing reduction, which at any particular time captures all crossings, especially for long edges. Our approach is based on the sifting technique and improves the level-by-level heuristics in the hierarchic framework by a further r
22#
發(fā)表于 2025-3-25 10:24:32 | 只看該作者
Constant-Work-Space Algorithm for a Shortest Path in a Simple Polygonalled “computing instead of storing”, we can design a naive quadratic-time algorithm for the problem using only constant work space, i.e., .(log.) bits in total for the work space, where . is the number of nodes in the tree. Then, another technique “controlled recursion” improves the time bound to .
23#
發(fā)表于 2025-3-25 12:40:49 | 只看該作者
24#
發(fā)表于 2025-3-25 15:59:49 | 只看該作者
25#
發(fā)表于 2025-3-25 22:41:39 | 只看該作者
26#
發(fā)表于 2025-3-26 03:51:17 | 只看該作者
Small Grid Drawings of Planar Graphs with Balanced Bipartitionrsection. It has been known that every planar graph . of . vertices has a grid drawing on an (.???2)×(.???2) integer grid and such a drawing can be found in linear time. In this paper we show that if a planar graph . has a balanced bipartition then . has a grid drawing with small grid area. More pre
27#
發(fā)表于 2025-3-26 07:39:26 | 只看該作者
Acyclically 3-Colorable Planar Graphsmaximum degree 4 and we show that there exist infinite classes of cubic planar graphs that are not acyclically 3-colorable. Further, we show that every planar graph has a subdivision with one vertex per edge that is acyclically 3-colorable. Finally, we characterize the series-parallel graphs such th
28#
發(fā)表于 2025-3-26 08:41:37 | 只看該作者
29#
發(fā)表于 2025-3-26 12:38:32 | 只看該作者
30#
發(fā)表于 2025-3-26 18:55:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 09:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
墨江| 平武县| 五大连池市| 始兴县| 高淳县| 东莞市| 光山县| 阳朔县| 德化县| 新郑市| 扶风县| 罗平县| 洪雅县| 曲水县| 临邑县| 抚州市| 惠来县| 茌平县| 斗六市| 阳春市| 沛县| 岫岩| 电白县| 平阴县| 丹棱县| 扎鲁特旗| 大埔区| 丰台区| 鄂州市| 北辰区| 漳州市| 苍南县| 威远县| 顺昌县| 洛隆县| 嘉黎县| 曲水县| 聊城市| 陆河县| 伊通| 额济纳旗|