找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: über Ungleichungen vom Bernstein-Nikolskii-Riesz-Typ in Banach R?umen; Rolf Joachim Nessel,Gerhard Wilmes Book 1979 Springer Fachmedien Wi

[復制鏈接]
11#
發(fā)表于 2025-3-23 11:24:14 | 只看該作者
12#
發(fā)表于 2025-3-23 16:38:31 | 只看該作者
Front Matterprices, hunger riots by plebeian groups were a daily occurrence, journeymen resorted to strikes more than ever before, anonymous threatening letters against the patrician families circulated in the city, the bourgeois opposition movement among the merchants took shape with its demand for the reform
13#
發(fā)表于 2025-3-23 21:42:12 | 只看該作者
14#
發(fā)表于 2025-3-24 00:29:37 | 只看該作者
15#
發(fā)表于 2025-3-24 04:04:10 | 只看該作者
,Verallgemeinerte Polynome und de La Vallée Poussin Mittel,1 to 2012. It begins with an analysis of spatial trends and variations in the composition of fixed capital expenditure followed by factors that determine investment in agriculture and its impact on farm income. The analysis reveals a phenomenal increase in per household investment from Rs.?2133 in 1
16#
發(fā)表于 2025-3-24 06:44:58 | 只看該作者
17#
發(fā)表于 2025-3-24 10:56:27 | 只看該作者
18#
發(fā)表于 2025-3-24 15:48:20 | 只看該作者
Ray Mines,Fred Richman,Wim Ruitenburghrdimensionalen Version und analogen Resultaten für ganze Punktionen exponentiellen Typs, von S.M. Nikolskii [31] 1951 bewiesen. Danach werden Ungleichungen der Art (1.1), also Absch?tzungen zwischen . Normen ein und derselben Punktion (mit kompaktem Spektrum), in der Literatur h?ufig als Ungleichun
19#
發(fā)表于 2025-3-24 21:33:15 | 只看該作者
https://doi.org/10.1007/3-540-29273-X, ?.,… wird jeweils das N-fache kartesische Produkt von ?, ?,… mit sich selbst bezeichnet. Für einen beliebigen Banach Raum X mit Norm ‖ ‖ = ‖ ‖. sei [X,X] = [X] der Raum aller beschr?nkten, linearen Operatoren von X in X. Weiter sei X*:= [X, ?] der zu X duale Raum der beschr?nkten, linearen Funktio
20#
發(fā)表于 2025-3-25 02:59:14 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 15:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
呼伦贝尔市| 托克逊县| 太和县| 阿坝| 普格县| 宜州市| 革吉县| 屯门区| 读书| 大渡口区| 金乡县| 兖州市| 黄山市| 克什克腾旗| 祁连县| 武城县| 南澳县| 淮阳县| 霍林郭勒市| 兴城市| 林西县| 治多县| 兴文县| 阳山县| 青阳县| 镇赉县| 礼泉县| 宜州市| 平顶山市| 托克托县| 长顺县| 株洲市| 林州市| 青龙| 视频| 含山县| 台湾省| 临汾市| 温宿县| 西华县| 大足县|