找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: éléments de Géométrie Rigide; Volume I. Constructi Ahmed Abbes Book 2011 Springer Basel AG 2011 Algebraic geometry.Number theory.Rigid anal

[復(fù)制鏈接]
樓主: dentin
11#
發(fā)表于 2025-3-23 10:46:29 | 只看該作者
12#
發(fā)表于 2025-3-23 17:12:47 | 只看該作者
éléments de Géométrie Rigide978-3-0348-0012-9Series ISSN 0743-1643 Series E-ISSN 2296-505X
13#
發(fā)表于 2025-3-23 19:00:40 | 只看該作者
https://doi.org/10.1007/978-3-7091-5760-2ersion et les invariants différentiels fondamentaux d’un morphisme. Nous définissons ensuite les morphismes lisses, non ramifiés et étales par les critères infinitésimaux, et nous étudions leurs principales propriétés. Nous donnons enfin quelques critères de lissité, entre autres le . (6.4.21).
14#
發(fā)表于 2025-3-23 22:48:16 | 只看該作者
https://doi.org/10.1007/978-3-7091-5624-7s établissons leurs principales propriétés. Certains compléments de géométrie algébrique ne serviront qu’au second volume. C’est le cas du théorème 1.13.21, d? à Gabber, qui donne un complément au résultat de platification par éclatement admissible de Raynaud-Gruson ([42] 5.2.2), et de la section 1.
15#
發(fā)表于 2025-3-24 02:59:06 | 只看該作者
16#
發(fā)表于 2025-3-24 10:22:01 | 只看該作者
17#
發(fā)表于 2025-3-24 14:40:30 | 只看該作者
https://doi.org/10.1007/978-3-7091-5760-2ersion et les invariants différentiels fondamentaux d’un morphisme. Nous définissons ensuite les morphismes lisses, non ramifiés et étales par les critères infinitésimaux, et nous étudions leurs principales propriétés. Nous donnons enfin quelques critères de lissité, entre autres le . (6.4.21).
18#
發(fā)表于 2025-3-24 15:51:45 | 只看該作者
0743-1643 héorème de comparaison du type GAGA pour les faisceaux cohérents. Ce volume contient aussi de larges rappels et compléments de la théorie des schémas formels de Grothendieck. Ce traité est destiné tout autant a978-3-0348-0012-9Series ISSN 0743-1643 Series E-ISSN 2296-505X
19#
發(fā)表于 2025-3-24 21:21:04 | 只看該作者
20#
發(fā)表于 2025-3-24 23:27:29 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 05:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鲁山县| 汾阳市| 壶关县| 乌兰察布市| 柘城县| 庆元县| 浦东新区| 平阳县| 秦皇岛市| 贡觉县| 张家口市| 贵阳市| 青冈县| 会东县| 宁武县| 都安| 天峨县| 阿克| 象山县| 泾川县| 连江县| 南雄市| 景宁| 镇平县| 历史| 泰兴市| 云南省| 贵溪市| 乌兰察布市| 普格县| 江津市| 岗巴县| 奈曼旗| 东乌珠穆沁旗| 葵青区| 金秀| 云阳县| 炉霍县| 石渠县| 甘孜县| 青岛市|