找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: 3D-Computation of Incompressible Internal Flows; Proceedings of the G Gabriel Sottas,Inge L. Ryhming Conference proceedings 1993 Springer F

[復(fù)制鏈接]
樓主: 五個(gè)
31#
發(fā)表于 2025-3-27 00:22:15 | 只看該作者
32#
發(fā)表于 2025-3-27 02:33:12 | 只看該作者
Image Restoration, Spatial StatisticsThe flow in the runner and the draft tube of the GAMM turbine was analyzed using two different types of Euler codes. The theoretical basis of the codes is outlined and the computational details are given, as well as some additional results.
33#
發(fā)表于 2025-3-27 05:53:21 | 只看該作者
Sampling from Finite PopulationsThe three-dimensional computation of incompressible internal flows was carried out for the runner and the distributor of the GAMM Francis turbine. The runner is calculated as potential flow using the finite element method and the distributor as viscous flow using the finite volume method.
34#
發(fā)表于 2025-3-27 10:08:43 | 只看該作者
35#
發(fā)表于 2025-3-27 14:44:10 | 只看該作者
36#
發(fā)表于 2025-3-27 19:44:36 | 只看該作者
https://doi.org/10.1007/978-94-011-2102-6olume discretization scheme with an explicit time integration and absorbing inflow/outflow boundary conditions is used. By comparing the numerical solution with measurements a good agreement was obtained.
37#
發(fā)表于 2025-3-27 21:56:53 | 只看該作者
Scattering and Inverse Scattering,ns. A finite volume technique is used for the discretization of the governing equations, which are modified via the artificial compressibility procedure, and steady solutions are obtained by explicit (pseudo-)time marching. For both the configurations examined good agreement with experimental data i
38#
發(fā)表于 2025-3-28 02:07:57 | 只看該作者
Scattering and Inverse Scattering,er equations. The Euler solver uses the artificial compressibility technique in order to find a steady solution. The governing equations are numerically solved using a finite volume discretisation in space and explicit Runge-Kutta integration in time. Artificial damping must be added to the numerica
39#
發(fā)表于 2025-3-28 07:59:22 | 只看該作者
40#
發(fā)表于 2025-3-28 13:36:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 19:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
通州区| 都匀市| 山阴县| 蓬安县| 绵竹市| 赣州市| 九龙坡区| 陇川县| 灵川县| 恩平市| 扎鲁特旗| 瑞昌市| 法库县| 万荣县| 宁蒗| 昌都县| 安图县| 周宁县| 包头市| 札达县| 进贤县| 平阴县| 岳普湖县| 尼木县| 乌鲁木齐县| 分宜县| 齐河县| 绥阳县| 邮箱| 阳新县| 揭西县| 平塘县| 林芝县| 深水埗区| 黎平县| 元朗区| 和田市| 新沂市| 隆昌县| 蓬莱市| 阿尔山市|