找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: 17 Lectures on Fermat Numbers; From Number Theory t Michal K?í?ek,Florian Luca,Lawrence Somer Book 2001 Springer-Verlag New York 2001 Ferma

[復(fù)制鏈接]
樓主: 相似
31#
發(fā)表于 2025-3-27 00:37:27 | 只看該作者
32#
發(fā)表于 2025-3-27 04:47:58 | 只看該作者
33#
發(fā)表于 2025-3-27 08:28:53 | 只看該作者
Cemal Kavalc?o?lu,Bülent BilgehanLet {..}. be an increasing sequence of positive integers. In this chapter we investigate some conditions under which the sum of the series . is an irrational number, and then we apply these results to the case for which the sequence {..}. is the sequence of Fermat numbers.
34#
發(fā)表于 2025-3-27 12:21:42 | 只看該作者
35#
發(fā)表于 2025-3-27 17:27:02 | 只看該作者
https://doi.org/10.1007/978-3-030-04275-2In this chapter we show how to apply Fermat numbers to generate infinitely many pseudoprimes and superpseudoprimes. To define pseudoprimes and superpseudoprimes, we will need to make use of Fermat’s little theorem which is a centerpiece of number theory. It gives a fundamental property of primes and is the basis of most tests for primality.
36#
發(fā)表于 2025-3-27 18:15:25 | 只看該作者
Studies in Systems, Decision and ControlWe will explore generalizations of Fermat numbers that share many of the same properties of the Fermat numbers; these properties were given in earlier chapters. We will also investigate other numbers such as the Cullen numbers, which bear some resemblance to the Fermat numbers.
37#
發(fā)表于 2025-3-28 00:53:56 | 只看該作者
38#
發(fā)表于 2025-3-28 03:55:37 | 只看該作者
39#
發(fā)表于 2025-3-28 08:34:17 | 只看該作者
17 Lectures on Fermat Numbers978-0-387-21850-2Series ISSN 1613-5237 Series E-ISSN 2197-4152
40#
發(fā)表于 2025-3-28 12:42:10 | 只看該作者
https://doi.org/10.1007/978-0-387-21850-2Fermat; Fermat Numbers; History of Mathematics; Mersenne number; Prime; number theory
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 17:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
霍州市| 青冈县| 凌源市| 庄河市| 淳化县| 新民市| 旬阳县| 山东省| 大埔县| 西青区| 广东省| 增城市| 合作市| 新乡市| 天峻县| 宁城县| 阳朔县| 婺源县| 德钦县| 荔波县| 法库县| 诸城市| 岚皋县| 无极县| 鄱阳县| 封开县| 镇原县| 古浪县| 武清区| 新疆| 图片| 和平区| 手机| 右玉县| 长春市| 巢湖市| 卢氏县| 信丰县| 莒南县| 武陟县| 永定县|