找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: 15th Chaotic Modeling and Simulation International Conference; Christos H. Skiadas,Yiannis Dimotikalis Conference proceedings 2023 The Edi

[復(fù)制鏈接]
樓主: 法庭
61#
發(fā)表于 2025-4-1 02:57:56 | 只看該作者
J. Koning,G. den Otter,P. Blok,J. J. Visserh the ever-increasing need for more power in combination with greater environmental awareness, there is a growing trend to incorporate also renewable energy sources; such as, wind, photovoltaic arrays, solar-thermal converters, biogas, etc. However, the incorporation of many smaller and often interm
62#
發(fā)表于 2025-4-1 06:29:40 | 只看該作者
https://doi.org/10.1007/978-3-662-05557-1tracted by such kind of systems due to their characteristics. Hence, through this paper, we propose a new chaotic discrete time systems. First, we introduce the mathematical description respectively for the proposed one dimensional (1-D) and two dimensional (2-D) maps. Then, we present the main prop
63#
發(fā)表于 2025-4-1 11:28:27 | 只看該作者
https://doi.org/10.1007/978-3-662-05837-4usually modeled as non-autonomous master-slave systems with harmonic driving. The aim of this work is to provide a transformation suitable for analyzing such systems via standard numerical continuation packages such as MATCONT and AUTO. We transform the original system into a structurally stable gen
64#
發(fā)表于 2025-4-1 15:49:36 | 只看該作者
65#
發(fā)表于 2025-4-1 19:36:23 | 只看該作者
66#
發(fā)表于 2025-4-2 01:01:21 | 只看該作者
67#
發(fā)表于 2025-4-2 05:32:59 | 只看該作者
Psychotherapie und Psychopharmaka,iscrete limit cycles are numerically calculated as chaotic dynamics and for self-organization. Firstly, the 2-D generalized Turing map with two system parameters for simplicity is shown to have pitchfork bifurcation diagrams with phase shift. Secondly, the fractal sets defined by initial points of c
68#
發(fā)表于 2025-4-2 09:34:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 12:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
普格县| 克什克腾旗| 抚顺市| 红原县| 彝良县| 泾源县| 康平县| 罗平县| 偃师市| 商城县| 汉沽区| 炎陵县| 新巴尔虎左旗| 都匀市| 繁昌县| 德钦县| 郎溪县| 焦作市| 滨州市| 固镇县| 洛隆县| 南郑县| 濉溪县| 江达县| 凉城县| 益阳市| 古蔺县| 乌拉特中旗| 黑山县| 丰都县| 乌拉特中旗| 祥云县| 高雄县| 奉化市| 石首市| 台北县| 长宁区| 砀山县| 壤塘县| 普定县| 吉木乃县|