找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: 13 Lectures on Fermat‘s Last Theorem; Paulo Ribenboim Book 1979 Springer-Verlag New York 1979 Fermatsches Problem.Mersenne prime.arithmeti

[復(fù)制鏈接]
樓主: industrious
11#
發(fā)表于 2025-3-23 13:36:45 | 只看該作者
Ulrich Spandau,Mitrofanis PavlidisIn this lecture, I’ll present results obtained by various new methods. My choice is rather encompassing. There are some attempts, which belong among those described in my Lecture IV, on the na?ve approach. Others involve penetrating studies of the class group. And entirely new avenues are opening with ideas from the theory of algebraic functions.
12#
發(fā)表于 2025-3-23 14:48:21 | 只看該作者
13#
發(fā)表于 2025-3-23 19:23:12 | 只看該作者
14#
發(fā)表于 2025-3-24 00:46:58 | 只看該作者
Overview: 978-1-4419-2809-2978-1-4684-9342-9
15#
發(fā)表于 2025-3-24 02:36:41 | 只看該作者
https://doi.org/10.1007/978-3-319-19776-0er than Fermat’s time. As Zassenhaus kindly pointed out to me, 2 is the oddest of the primes. Among its special properties, this oddest of all the primes is even; it is also the only exponent for which it is known that the Fermat equation has a nontrivial solution.
16#
發(fā)表于 2025-3-24 08:14:29 | 只看該作者
https://doi.org/10.1007/978-3-319-19776-0d not be looked down on. On the contrary, they show much ingenuity, and they have helped to understand the intrinsic difficulties of the problem. I’ll point out, in various cases, how these attempts have brought to light quite a number of other interesting, perhaps more difficult problems than Fermat’s.
17#
發(fā)表于 2025-3-24 13:10:02 | 只看該作者
18#
發(fā)表于 2025-3-24 15:48:04 | 只看該作者
Ulrich Spandau,Mitrofanis Pavlidision to the intrinsic interest of this modified problem, I mentioned in my fourth lecture how Sophie Germain’s criterion for the first case involves Fermat’s congruence modulo some prime. Accordingly, I will begin by studying the Fermat equation over prime fields.
19#
發(fā)表于 2025-3-24 19:13:52 | 只看該作者
https://doi.org/10.1007/978-1-4684-9342-9Fermatsches Problem; Mersenne prime; arithmetic; elliptic curve; number theory; prime number
20#
發(fā)表于 2025-3-25 01:44:57 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 17:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
梅州市| 郸城县| 江口县| 宣恩县| 长武县| 昭苏县| 南木林县| 高雄县| 建瓯市| 仁怀市| 磐石市| 益阳市| 广宗县| 昌邑市| 莆田市| 万山特区| 松滋市| 宕昌县| 颍上县| 遂溪县| 自贡市| 静宁县| 芜湖县| 郧西县| 当涂县| 正镶白旗| 湄潭县| 莲花县| 漳平市| 奉贤区| 固镇县| 玛沁县| 囊谦县| 信阳市| 桂东县| 高阳县| 井陉县| 嘉义市| 永仁县| 青海省| 疏附县|