找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: 13 Lectures on Fermat‘s Last Theorem; Paulo Ribenboim Book 1979 Springer-Verlag New York 1979 Fermatsches Problem.Mersenne prime.arithmeti

[復(fù)制鏈接]
樓主: industrious
11#
發(fā)表于 2025-3-23 13:36:45 | 只看該作者
Ulrich Spandau,Mitrofanis PavlidisIn this lecture, I’ll present results obtained by various new methods. My choice is rather encompassing. There are some attempts, which belong among those described in my Lecture IV, on the na?ve approach. Others involve penetrating studies of the class group. And entirely new avenues are opening with ideas from the theory of algebraic functions.
12#
發(fā)表于 2025-3-23 14:48:21 | 只看該作者
13#
發(fā)表于 2025-3-23 19:23:12 | 只看該作者
14#
發(fā)表于 2025-3-24 00:46:58 | 只看該作者
Overview: 978-1-4419-2809-2978-1-4684-9342-9
15#
發(fā)表于 2025-3-24 02:36:41 | 只看該作者
https://doi.org/10.1007/978-3-319-19776-0er than Fermat’s time. As Zassenhaus kindly pointed out to me, 2 is the oddest of the primes. Among its special properties, this oddest of all the primes is even; it is also the only exponent for which it is known that the Fermat equation has a nontrivial solution.
16#
發(fā)表于 2025-3-24 08:14:29 | 只看該作者
https://doi.org/10.1007/978-3-319-19776-0d not be looked down on. On the contrary, they show much ingenuity, and they have helped to understand the intrinsic difficulties of the problem. I’ll point out, in various cases, how these attempts have brought to light quite a number of other interesting, perhaps more difficult problems than Fermat’s.
17#
發(fā)表于 2025-3-24 13:10:02 | 只看該作者
18#
發(fā)表于 2025-3-24 15:48:04 | 只看該作者
Ulrich Spandau,Mitrofanis Pavlidision to the intrinsic interest of this modified problem, I mentioned in my fourth lecture how Sophie Germain’s criterion for the first case involves Fermat’s congruence modulo some prime. Accordingly, I will begin by studying the Fermat equation over prime fields.
19#
發(fā)表于 2025-3-24 19:13:52 | 只看該作者
https://doi.org/10.1007/978-1-4684-9342-9Fermatsches Problem; Mersenne prime; arithmetic; elliptic curve; number theory; prime number
20#
發(fā)表于 2025-3-25 01:44:57 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 20:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东城区| 白城市| 双牌县| 金阳县| 保山市| 集贤县| 文昌市| 淄博市| 开化县| 东乌| 和平区| 隆回县| 抚顺县| 清原| 静安区| 正宁县| 铜鼓县| 巴楚县| 吉安县| 彭阳县| 湖口县| 东乡族自治县| 乌海市| 吉首市| 湾仔区| 南召县| 柏乡县| 井冈山市| 平安县| 牡丹江市| 镇巴县| 林西县| 德令哈市| 永定县| 临澧县| 西吉县| 固原市| 天柱县| 府谷县| 桃园市| 孟津县|