找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: 12th Chaotic Modeling and Simulation International Conference; Christos H. Skiadas,Yiannis Dimotikalis Conference proceedings 2020 Springe

[復制鏈接]
樓主: SCOWL
31#
發(fā)表于 2025-3-26 23:54:00 | 只看該作者
32#
發(fā)表于 2025-3-27 04:45:48 | 只看該作者
,Europ?isierung des nationalen Rechts,gated. It is shown that the presence of variable parameters (semiaxes, modules) lead to the stochastic behavior of the complex deformation field. Complex zero displacement field operators for both separate and coupled elements of the structure are introduced. It is shown that the transposition of se
33#
發(fā)表于 2025-3-27 06:10:12 | 只看該作者
34#
發(fā)表于 2025-3-27 10:48:03 | 只看該作者
,Mathematik w?hrend der Renaissance,, wherein the interdiffusion of the co-precipitates takes place from multiple diffusion sources arranged in a symmetric framework. The precipitation zones are delimited by clear polygonal boundaries in congruence with the spatial distribution of the diffusion pools. 2. A displacement reaction in a s
35#
發(fā)表于 2025-3-27 14:22:17 | 只看該作者
36#
發(fā)表于 2025-3-27 18:47:01 | 只看該作者
37#
發(fā)表于 2025-3-27 23:45:43 | 只看該作者
38#
發(fā)表于 2025-3-28 06:09:08 | 只看該作者
https://doi.org/10.1007/978-3-540-77314-6nce of the weak small-scale uniaxial anisotropy valid for all spatial dimensions .. The ultraviolet divergent Green’s functions are identified and the renormalization of the model is performed in the first order of the corresponding perturbation theory. The explicit form of all renormalization const
39#
發(fā)表于 2025-3-28 10:03:05 | 只看該作者
https://doi.org/10.1007/978-3-540-77314-6 without the accumulation of round-off error caused by numerical iterations. Then, the 1-D map is applied for deriving a 2-D solvable chaos map corresponding to the Belousov-Zhabotinsky (BZ) reaction, which is known to have chemical waves in time. Finally, discrete limit cycles with chaotic dynamics
40#
發(fā)表于 2025-3-28 14:11:22 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 08:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
保靖县| 南京市| 金阳县| 蒙山县| 杂多县| 孝昌县| 永登县| 新巴尔虎左旗| 东港市| 射洪县| 丹巴县| 陕西省| 哈密市| 花垣县| 蓬安县| 阿合奇县| 宁陕县| 南澳县| 白山市| 巩留县| 桐梓县| 海盐县| 读书| 洞口县| 巩义市| 临城县| 波密县| 郸城县| 土默特左旗| 自贡市| 梁平县| 兴城市| 临武县| 遵化市| 丰原市| 新民市| 遵义县| 塘沽区| 武夷山市| 和田县| 和政县|